
M5Stack
CM4Stack

Guide.

Table of Contents
Table of Contents	
2

Introduction	
3

CM4 Stack Development Kit Features	
3

Power supply	
3

Storage	
4

Opening the Packaging	
4

Exploring the Outside	
5

Connecting the Hardware	
6

First Power Up	
6

Clock Demo.	
7

Connecting External Hardware via I2C.	
8

Accessing the CM4Stack Development Kit in USB Mode.	
9

Installing the new OS version	
10

Setting up SSH remote access to the CM4Stack.	
11

Shutting down the CM4Stack via SSH.	
12

IP Address (Internet Protocol Address)	
12

Installing an MQTT Broker.	
13

Sending MQTT messages from M5Stack controllers to the MQTT broker.	
15

Building the MQTT server with Mosquitto, Nodered, Grafana and InfluxDB.	
15

Setting up a sensor and checking Mosquitto is receiving.	
17

Nodered setup.	
17

Influxdb	
19

Grafana	
19

Controlling the screen.	
21

Changing the Background Colour.	
21

Displaying text on the screen.	
23

Auto reload the Demo from code.	
24

DataSheets	
24

Index	 25

Getting started with the CM4
Stack Development Kit.

Written by Adam Bryant © 2023

Introduction
The CM4 Stack Development is the latest of the
controller line to be released but unlike regular
M5Stack controllers, The CM4 Stack is not based
on and ESP32 microcontroller but is built around
the CM4 Module from Raspberry Pi Foundation.

Unlike the RP CM4, the CM4 Stack come prebuilt
needing only a monitor, Keyboard and mouse in
order to get started.

CM4 Stack Development Kit
Features

From the back of the packaging, the features are
as follows:

• CM4104032 module with the following features:

• Quad Core Cortex A72 @1.5GHz,

• 4GB Ram,

• 32 GB eMMC,

• 2.4GHz/5GHz WIFI and BLE,

• 2.0” IPS Colour LCD 240 X 320 pixel resolution,

• Capacitive multi-Touch,

• ATECC608B Crypto Chip,

• 2W Speaker.

•
• The CM4 Stack has the following connectors on

the outside:

• 1 X Gigabit Ethernet,

• 2 X USB 3.2 (Type A)

• 1 X USB 2.0 OTG (type C)

• 1X HDMI Display,

• 2 X grove Ports (I2C and UART)

Power is provided via the included DC 12 V 3A
adapter or via the USBC port using a 5V 3A
adapter.

Power supply
The CM4 Stack can be powered through the barrel
jack with a 12V @ 3Ah supply of through the USBC
OTG port with a 5V @3Ah supply.

Storage
As mentioned above, the CM4 Stack has a 32GB
eMMC chip soldered to the board and no SD Card
slot meaning that in order to upgrade the storage
you will need to use and external USB drive.

Opening the Packaging
When you receive your CM4 Stack development kit
and open the box you will find the following items
inside:

• The CM4 Stack Development Kit,

• 12V Power supply,

• Double sided information card,

• Pack of spare mounting fixings.

Exploring the Outside
When you Open the CM4 Stacks box, the first
thing you will see is the 240X320px (2.0”) screen
and on the bottom of the screen is a little red circle
that is a dedicated touch zone for operating the
the OS menu when a screen and keyboard is
connected.

On the bottom you will find the Gigabit Ethernet
port along with the 12V DC power jack which uses
a plug with a 5.5mm OD 2.1mm ID jack.

On the left hand side you will find the Boot select
switch and 2X USB A 3.2 ports.

On the top you will find the full sized HDMI outport
for connecting external HDMI monitors and
screens.

And on the right hand side you will find the USB C
OTG, HY2.0 4P I2C Grove and HY2.0 4P UART
Grove port

Underneath you will find the connectors for wall
mounting or Din rail mounting and you will also see
the extractor fan used to cool the CM4 module
from over heating.

Connecting the Hardware
In order to get started all we need is to connect a
Key board and mouse into the USB ports and an
HDMI monitor into the HDMI port on the top of the
CM4Stack development kit.

First Power Up
When you first power up the CM4 Stack
Development kit you will presented with the
introduction page.

All you need to do is have a read and then press
the “Next” button to move on to the first of the
configuration screens:

Here you set you Country of use, operating
language, time zone and keyboard language. Once
you have these set up to your needs, click the
“Next” button to move on to the Username and
Password configuration screen.

Make sure you fill these in and use a secure
proper password and not a password that is
likely to appear in any of the Top Passwords list
available online as there have already been
reports of hacked Raspberry Pi’s used to
Robohack other online connected devices. Do
not attempt to bypass the password boot
system as logging in without a password will
also put you CM4 Stack Development Kit at risk
of hacking.

Once you have filled in the unique username and
password, you can press the “Next” button to
continue.

The next screen will ask you to change the default
screen size to match the currently detected
monitor size.

Press next to move on to the WIFI setup screen
which shows that the WIFI version of the CM4 is
actually installed and not an added option.

Once the Scan has completed, select your
network, insert the password and click “Next” to
continue.

The OS will attempt to look for updates and when
complete will ask you to restart and then you will
arrive in the Normal Raspbian desktop.

There is a problem with the updates in that there is
a driver that gets ignored and stops the fan and
the status display for being shown on the onboard
screen. As a walk around for these issues, it has
been found that commenting out (add ing #
symbol to the line beginning), of two lines in

rc.local fixes these issues (see screen grab for the
lines.)

Clock Demo.
In the documents for the CM4 Stack is an example
code which shows a very nice QT based clock on
the built in screen

If you follow the instructions for installing the
program, you will encounter an error. The error is
due to packages that didn’t get installed.

The instructions for installing the example is as
follows:

sudo apt update

sudo apt install qtbase5-dev qt5-qmake
qtbase5-dev-tools qml

sudo apt install build-essential cmake

git clone https://github.com/
Forairaaaaa/CM4Stack_QtDemo.git

cd CM4Stack_QtDemo

mkdir build && cd build

cmake .. && make

However when you run the last command you get
an error about files not found. This turns out to be
an issue with the dependences and you need to
run:

sudo apt-get install qtdeclarative5-
dev

Before running

cmake .. && make

To get the example to compile.

Once the example has finished compiling, to can
run the code with:

./cm4QtDemo

Which will run it on the desktop but to make it
appear on the screen of the CM4Stack you need to
run:

export QT_QPA_PLATFORM=linuxfb:fb=/
dev/fb$(cat /proc/fb | grep fb_st7789v
| awk '{print $1}')

./cm4QtDemo

And you will see the clock running based on the
current system time as shown in the photo on the
left.

Connecting External
Hardware via I2C.

While the CM4 Stack does not come with extra
sensors, as mentioned earlier, the CM4 Stack as a
“Grove” four pin port for I2C and UART
communication (no analog port unfortunately).

In order to use an I2C device with the CM4 Stack
you first need to connect a sensor to the I2C port
with the four pin grove cable that came with the
sensor (while powered off !!) and then power on
the CM4 Stack.

For this example I will use the M5Stack ENVIII
sensor available here M5Stack ENVII Unit.

This is plugged into Port1 the I2C port.

Once the CM4Stack has booted up we need to
check that the I2C services have been enabled in
the os. To find this out, you need to open the
Raspberry Pi configuration tool found in the
Preferences menu.

Switch to the interfaces tab and check that I2C has
been enabled as shown in the screen shot above.

If I2C has been enabled, close this panel and then
open the terminal and type:

I2cdetect -y 1

And hit return. This will show us a table with
detected I2C address of devices currently
connected to the I2C port.

In the screenshot we can see two address found
0x44 and 0x70. 0x44 is the address of the SHT30
is the temperature and humidity sensor while 0x77
is the address of the QMP6988 pressure sensor.

Next we need to install the libraries that python
needs to access the SHT30 and the QMP6988
sensors in the ENVIII Unit using the following
commands :

sudo pip3 install adafruit-
circuitpython-sht31d

Which copies and installs all the necessary files
from the Adafruit archives need to access the
SHT30’s temperature and humidity data.

Then to fetch the data which open Thonny and add
the following configuration and imports into
REPL(Shell) one line at a time:

import board

import busio

import adafruit_sht31d

i2c = busio.I2C(board.SCL, board.SDA)

sensor = adafruit_sht31d.SHT31D(i2c)

And then we can print the reading with:

print('Humidity:
{0}%’.format(sensor.relative_humidity))

Or

print('Temperature: {0}
C’.format(sensor.temperature))

https://shop.m5stack.com/products/env-iii-unit-with-temperature-humidity-air-pressure-sensor-sht30-qmp6988?ref=pfpqkvphmgr

Accessing the CM4Stack
Development Kit in USB

Mode.
From time to time you will need to access the CM4
Stacks eMMC memory in order to update and
install a new operating system. In OSX this can be
a pain.

Is this section I will show you how to get the
CM4Stack to appear as a USB drive in OSX.

First you need to connect the CM4stack to a usb
port via the Cm4 Stack’s USB OTG port while
holding the boot button in. If you do this correctly,
the HDMI port will glow red from the boot LED
hidden inside the case.

To get the CM4 Stack to appear as a USB drive,
we need to install some software. This is easiest
done using the Homebrew system.

If you haven’t got Homebrew installed on your OSX
machine type the following command in:

/bin/bash -c "$(curl -fsSL https://
raw.githubusercontent.com/Homebrew/
install/HEAD/install.sh)"

This command installs the required tools for home
brew to work, you will need this to be installed as
root so when asked for the system password, fill
the password in as its requested by OSX and not
the software installer.

Now that Homebrew is installed, We can install
and compile the drivers needed for the CM4 Stack
to appear as a drive. Jeff Geerling has written a
good guide for it that you can find here:

https://www.jeffgeerling.com/blog/2020/how-flash-
raspberry-pi-os-compute-module-4-emmc-
usbboot

For the CM4Stack to appear we fist need to install
LibUSB using:

brew install pkgconfig libusb

And when that has finished installing, clone the
usbboot GitHub repository using:

git clone --depth=1 https://
github.com/raspberrypi/usbboot

After the repository has finished being copied,
move into the directory with:

cd usbboot

And then to compile usb boot use:

make

When completed, USBBOOT can be run with:

sudo ./rpiboot

And then after a few seconds, the CM4Stack will
appear as a USB drive.

https://www.jeffgeerling.com/blog/2020/how-flash-raspberry-pi-os-compute-module-4-emmc-usbboot
https://www.jeffgeerling.com/blog/2020/how-flash-raspberry-pi-os-compute-module-4-emmc-usbboot
https://www.jeffgeerling.com/blog/2020/how-flash-raspberry-pi-os-compute-module-4-emmc-usbboot
https://github.com/raspberrypi/usbboot
https://github.com/raspberrypi/usbboot

Installing the new OS version
The first batch of CM4 Stack Development Kits
came with the 32 bit version of RPI bullseye
preinstalled. Shortly after, the 64 bit version was
released and that is the version I will now install.

Go to : https://t.co/3mx4cW3hqa and download
the latest version.

The files comes as a zipped disk image like most
RPI distributions and so we will need to unzip the
file file to reveal the disk image.

To burn the image to the CM4Stacks eMMC
memory we need to download the RPI imager
program from https://www.raspberrypi.com/
software/

Click on the version for the OS you are using (in my
case OSX) to download and extract to the
applications folder.

Double click (or single click depending on your OS)
to open the imager.

Click on “Choose OS” and then scroll down to find
“Use Custom”. This will allow us to select the disk
image we just downloaded so that it can be burnt
to the CM4 Stack’s eMMC.

This will open a file dialog that will allow us to look
for the disk image.

Select the disk image and click open to return to
the main screen showing that the disk image is
now selected.

https://t.co/3mx4cW3hqa
https://www.raspberrypi.com/software/
https://www.raspberrypi.com/software/

Now click on storage to open the available USB
devices which in my case only shows the
CM4Stack. Click on it to select it and click “Write
to begin installing the new OS version.

You may be asked for your password and
permission to access certain folder on OSX but
this is down to security setting within the OS put
inlace to prevent unauthorised file and folder
access.

Once the new OS has been written, you can reboot
the CM4 Stack and you will now be in the new
64bit RPI os.

Setting up SSH remote
access to the CM4Stack.

In a lot of cases it will not be possible to plug a
keyboard mouse and monitor into the CM4 Stack
in order to update the software of install new
software. This is mode is known as “headless”
mode. In order to access the CM4 Stack in this
mode we need to configure SSH on the CM4
Stack which will allow us to connect to it from
another computer on the network to update and
install software.

In order to set up remote access to the CM4 Stack
you will need to connect a USB Keyboard, mouse
and a HDMI monitor and then boot into Raspbian.

Click on the Raspberry icon and go to Preferences
> Raspberry Pi Configuration.

In this window, you will need to click on the slider
to the right of SSH to enable SSH, Click on OK and
then reboot the CM4 Stack.

Once the CM4 Stack as rebooted, the ip address
should be shown on the CM4 Stack’s screen
however, if it isn’t shown you will need to find the
IP address. To get the IP address assigned to the
CM4 Stack, Open the terminal and type:

Ifconfig

This command brings up a list of active network
devices. Scroll down to wlan0 and you will see the
currently assigned IP address.

Write down the IP address ready and open a
terminal in another computer and type in:

ssh <yourname>@<cm4ipaddress>

Replace <yourname> and <cm4ipaddress> with
the user name you gave the CM4 during initial boot
and setup and the IP address that should be
shown on the the CM4 Stacks screen. Type “yes”
(y does not work) to the questions and you will
now be connected to the CM4Stack remotely.

To close the SSH session you just need to type

exit

And then close the terminal window.

If you have issues of ssh keys having been
changed, this is because the key files saved on the
computer (not the CM4) are different. In OSX you
need to find the folder <username>>SSH and
delete all files in side. When you re try to connect
with ssh you should be able to connect normally.

Shutting down the CM4Stack
via SSH.

In order to safely power off the CM4Stack so that
the files don’t get corrupted there are two remote
commands that are needed.

sudo shutdown -r now

Is used to reboot the CM4Stack while:

sudo shutdown now

Is used to shut down the CM4Stack.

Never remove the power from the CM4Stack
without running these commands as there is a high
chance of the OS stored on the CM4Stack’s
memory getting damaged and preventing the
CM4Stack from booting. 

IP Address 
(Internet Protocol Address)

The is a problem with using the previous steps to
access the CM4 Stack and that is due to IP
(Internet Protocol) address’ are not permanently
attached to a device on a network and that
rebooting the CM4 Stack may result in a different
address being assigned to the CM4Stack.

We can get around this issue by having the
CM4Stack request that an IP address is
permanently assigned to it. For this, we need to
edit a file to add some settings.

I started by reading the guide on Tom’s Hardware
website found here: https://
www.tomshardware.com/how-to/static-ip-
raspberry-pi but discovered that some things had
to be slightly differently for the CM4 Stack.

The first step in setting up a fixed IP address is to
find out the current assigned IP address. This is
normally displayed on the the CM4 Stacks load
screen next to wlan0 for Wireless or eth0 for a
wired network:

In the above image you can see that the CM4Stack
is connected via wlan0 but I have blurred out the
IP address for privacy.

https://www.tomshardware.com/how-to/static-ip-raspberry-pi
https://www.tomshardware.com/how-to/static-ip-raspberry-pi
https://www.tomshardware.com/how-to/static-ip-raspberry-pi

There are times where this doesn’t always show
and so in this case you need to connect a screen,
keyboard and mouse to the CM4 Stack and view
the address as shows in the Rasbian OS. To find it
in Raspbian you can look it up by right click on the
wifi icon, click on wifi preferences and then select
the wlan0 interface:

Which you can see has also been blurred out agin
for privacy.

As well as the IP address, you will also see the
Routers address and the DNS server address,
make a note of all three address ready for editing a
file.

While we have a Keyboard and mouse connected
to the CM4 Stack, open a terminal and type:

Sudo nano /etc/dhcpcd.conf

And scroll to the bottom of the file:

Now add the following lines:

interface wlan0

static routers=[ROUTER IP]

static domain_name_servers=[DNS IP]

static ip_address=[STATIC IP ADDRESS
YOU WANT]/24

Note 1: It is worth noting that in the guide it shows
an underscore between static and routers but this
cause issues on my CM4 and I had to replace the
underscore with a space.

Note 2: Do not forget to add the /24 after the IP
address you want to be permanently set as this
defines a subnet mask of 255.255.255.0!

Save and close the file and then reboot the
CM4Stack to apply the change.

Installing an MQTT Broker.
As the CM4 stack is a full RPI micro computer, we
can set it up as an MQTT broker to handle MQTT
traffic sensors without the use of an online service.

In the following steps I will show you how to install
and configure the Mosquitto MQTT broker.

As always, when installing software on the CM4
Stack, first run:

Sudo apt update

Followed by

Sudo apt upgrade

To update the currently installed software and look
for updates for available software. Once the
updates have finished installing and the CM4
Stack and been restarted to apply any system
updates, we can type in the following command to
begin the Mosquitto install.

sudo apt install mosquitto mosquitto-
clients

The above line consists of two commands. The
first part of the command installs the Mosquitto
broker and the second installs the Mosquitto
clients used to communicate and test the broker
on the CM4 Stack.

Once installed, we then need to set Mosquitto to
autostart on boot. For that we need to use the
following command to setup the service.

sudo systemctl enable
mosquitto.service

To test that the Mosquitto broker is working type:

mosquitto -v

Before we can communicate with Mosquitto, we
need to set up an authentication file. You do that
by typing

Sudo nano /etc/mosquitto/
mosquitto.conf

To open the config file in the Nano text editor.

Move to the end of the file and on a new line add
the following lines of code and then save the file.

listener 1883

allow_anonymous true

In order for the changes to the configuration to be
used, Mosquitto need to be restarted with:

sudo systemctl restart mosquitto

Warning: the above is for testing the Mosquitto
service and if others use the network the
CM4Stack is connected to you will need to
configure user and password access.

To add a user and password ignorer to secure the
connection we first use:

sudo mosquitto_passwd -c /etc/
mosquitto/passwd Core_2_AWS

I’m using the user name Core_2_AWS because this
is part of my IOT V2 book that is based around the
Core2 AWS controller.

During the process, a file called passwd gets
created and you will be asked to type in a
password. Be careful when typing the password in
as it is not shown on screen while you type it and
so there is a large possibility to make a mistake.

Next type in the nano command again to reopen
the file:

Sudo nano /etc/mosquitto/
mosquitto.conf

This time add:

per_listener_settings true

To the top of the file and:

password_file /etc/mosquitto/passwd

Under the last two lines added previously.

Save the file again and restart Mosquitto again
with:

sudo systemctl restart mosquitto

To check that Mosquitto is working with the new
changes run:

sudo systemctl status mosquitto

To test Mosquitto can receive messages, open a
new shell/terminal and type:

mosquitto_sub -d -t testTopic

This creates a new topic called test in which will
hold our messages for testing.

Now open up another new shell/terminal and type:

mosquitto_sub -d -t testTopic -u
Core_2_AWS -P pass1245

Replacing Core_2_AWS with the username you set
and replace the pass1245 with the password you
set.

In order to send a message to the Mosquitto
broker from within the CM4 Stack, type the
following into the new window and you should see
the message appear in the previously opened
window.

mosquitto_pub -d -t testTopic -m
"Hello world!”

Sending MQTT messages from
M5Stack controllers to the MQTT

broker.

In order to test that the Core2 AWS can also
communicate with the Mosquitto broker we have
just set up on the CM4 Stack, we power on the
Core two and connect to UIFlow 1: https://
flow.m5stack.com/

Use UIFlow 1 for the moment because UIFlow 2 in
only in open Alpha for testing with S3 based
M5Stack controllers.

In UIFlow make sure your Core2 AWS is connected
by going into the settings:

Click on the Icon of the Core 2 to select it and then
type in you API key that gets shown on the Core
2’s screen on startup. Click ok to close this panel
and then look on the bottom left of uiflow:

You should see the API code printed in green. If
the API code is red it means that the code is wrong
or that a connection to the M5Stack server is not
available.

If its API code is green, place the following code
blocks as shown, insert you own username and
password, click the run button and when you

switch back to the CM4 Stack you should find a
message appearing in the terminal.

Building the MQTT server with
Mosquitto, Nodered, Grafana and

InfluxDB.

One of the issues I discovered from configuring the
CM4 Stack as a MQTT server using the previous
steps is that a software update prevented certain
versions of Nodered from installing. After spending
over a week trying to solve the issue, I abandoned
that method and had to wipe the CM4 Stacks
eMMC and start again.

The Portaina method uses a package or container
preconfigured with a set of of tools, libraries and
programs for creating software but allows all
programmers to have the same software
environment where ever they may be.

I started building the server by following this guide:

https://learnembeddedsystems.co.uk/
easy-raspberry-pi-iot-server

But in several sections I had to deviate because
certain functions were not working for my setup.

As when installing new software on the CM4Stack,
start with the usual:

Sudo apt update

https://flow.m5stack.com/
https://flow.m5stack.com/
https://learnembeddedsystems.co.uk/easy-raspberry-pi-iot-server
https://learnembeddedsystems.co.uk/easy-raspberry-pi-iot-server

Followed by

Sudo apt upgrade

And then when complete type in the follow:

curl -fsSL https://
raw.githubusercontent.com/SensorsIot/
IOTstack/master/install.sh | bash

This downloads the necessary tools needed to
setup and install the server software. Once finished
use:

sudo shutdown -r now

To reboot the CM4Stack.

After the reboot, move into the IOTstack folder
with:

cd IOTstack/

And run:

./menu.sh

To open the installer which is used to configure
and install the necessary packages.

Hit the <Enter> key to enter the menu which allows
selection of the packages to install.

Use the Arrow keys to move up and down the
menu and hit the <space> button to select the
following packages:

• Grafana

• InfluxDB

• Mosquitto

• Node-RED

• Portainer-CE

When you get to Node-Red, you will find a warning
message, press the <right arrow> key to enter the
options, select “build list” and when complete click
on back to return to the selection screen. Once all
the packages are selected hit <enter> to build the
packages list and then go to “Docker Commands”
and click on “Start Stack” to begin downloading
and install ion of the docker images needed for the
server.

When complete, we can go back to the menu and
click on exit to leave the installer.

To check if everything is working, type in:

docker-compose ps

Which will show us the running containers.

Setting up a sensor and checking
Mosquitto is receiving.

Next we need a device to test the connection to
the CM4 Stacks server works. The MQTT test
code I used on the Core2 AWS to read and
transmit values has been built in UIFlow and is as
follows:

And uses the same ENVII sensor I used previously.
In the above image I have blurred out the
username and password for security reasons.

Run a test MQTT client over the ssh terminal with:

docker exec -it mosquitto
mosquitto_sub -d -t sensor_data

And you will see the screen filling with readings.

The above image show that the Core2 AWS is
connected to the CM4 Stacks MQTT server and
data is being received.

The next step is to create the database that will
store the readings. Close the shell window to
terminate the shell session, open a new window
and re connect to the CM4Stack over SSH.

Open Influxdb using:

docker exec -it influxdb influx

And type the following to create the new database:

CREATE DATABASE sensor_data

Once the database is created, we can exit Influxdb
by typing:

quit

And can now move on to configuring node red.

Nodered setup.

To load Nodered you need to open a web browser,
type in the CM4Stacks IP address (shown on the
front screen) but add :1880 to the end:

http://192.168.0.102:1880 (For example)

Nodered has open on a blank screen in my case
because I have already tried accessing node red
before.

Add an “MQTT In” block and an “Influxdb out”
block and connect as shown:

To configure the blocks, double click on the MQTT
In block to open the configuration options:

http://192.168.0.102:1880

Click on the pencil icon to open the server
settings:

Type in a name for the server (I used the
sensor_data topic for the name) set the IP address
to the CM4 stack, and leave the port number as
1883.

Click on “Update” to close and apply the settings
and return to the previous panel, select the newly
added server from the dropdown list if not
automatically set. Make sure the other options are
set as shown above and click “Done” to finish
configuring the MQTT block.

Next, double click on the influxdb out block to
open its settings:

Click on the pencil icon to open the server setting
window:

Type in the CM4 Stacks IP address again and
leave the port number as shown, type in the
sensor_data database name we created earlier,
give the server a name and then click the “update”
button to close and apply these settings and return
to the previous window.

Make sure that the “Measurement” and “Name”
box’s are filled with the database name and click
“Done” to close the settings and that is all the
configuration complete. Click on the “Deploy”
button at the top of the screen and everything
should now work.

Influxdb

We can test that influxdb is receiving our data by
going back the the shell window and typing the
following commands:

docker exec -it influxdb influx

USE sensor_data

show measurements

select * from sensor_data

Which should now show data being written to the
database:

With this all working, we can now type:

quit

To exit out of influxdb and move on to Grafana.

Grafana

Grafana is an open source web based tool used for
collecting and display the data being captured by
devices connected to the MQTT server. With
Grafana we can separate out and graph the
individual sensor data recorded on the ENVIII and
display on a clean web page with next to no
programming.

In the next few paragraphs, I will show you the
steps need to build the display graphs shown in
the screen shot above from the data getting written
to the infuxdb database.

To access Grafana hosted on the CM4 Stack you
need to type in the CM4 Stack’s IP address shown
ion the front of the CM4 Stack followed by :3000
which will load up the Grafana from page asking
you to log in.

The default user name and password for Grafana
is admin and admin (lowercase) however, when
you log in for the first time, you will be requested
for a new password.

Once the new password is set and logged in, you
will be taken to Grafana’s main screen:

Before we can display an dat being recorded, we
first need to select the data source to read from.

Click on the Data Sources panel to add a data
source:

As we are using an Influxdb database, click on
Influxdb to add the data source and move on to
the configuration panel.

Type in the CM4 Stack’s IP address followed by
:8086 and then scroll down to the bottom of the
page:

Type in the name of the influxdb database we
created (in my case sensor_data) and then click on
the “Save & Test” button.

If you get a green block with a message saying:

datasource is working. 2 measurements
found

It mean the configuration is correct and we can
more on to creating the dashboard to display the
readings.

Click on the round orange logo to return to the
main page and you should see that the data
source panel is now saying complete. Click on the
Dashboard panel to go to the dashboard creation
screen:

Click on the “Add New Panel” to create a a new
panel and you will be taken to the panel setup
screen.

On the right of the page change “Panel Title” to
“Core 2 AWS Temperature “ then in the bottom
click on “select measurement” and set to
“sensor_data” which is the name of the influxdb
database.

Next click on the “field Value” box and set it to
“temperature”and you should see the graph above
populated with readings.

Click on “Save” and you will be returned to the
dash board with a new graph.

Add two more panels for the Pressure and
humidity (don’t forget to click “save” and “apply”)

And you now will have a nice no code graphical
display of the reading being sent and organised by
the MQTT server hosted on the CM4 Stack
Development Kit. 

Controlling the screen.
A big shout out to Lous Llamas @LuisLlamas on
twitter for giving me the directions to get started
on programming the screen as I had forgotten all I
knew about the frame buffer.

The CM4Stack Development kit has an ST7789V2
2.0” screen on the front with a resolution of
240X320 pixels set up in portrait mode.

There are many ways to control and display things
on the built in screen but for ease of use, in the
following step I will use the Python programming
language with the Pygame python module.

In order to use the Pygame Python module you will
first need to install Pygame if its not already
installed.

To install Pygame on the CM4Stack type:

Sudo pip install pygame

And hit return. If everything worked then you will
see the following message:

ajbryant@raspberrypi:~ $ sudo pip
install pygame

Looking in indexes: https://pypi.org/
simple, https://www.piwheels.org/
simple

Requirement already satisfied: pygame
in /usr/lib/python3/dist-packages
(1.9.6)

Confirming that Pygame is now installed. Next step
is to create a work folder. In the root folder shown
when you first SSH into the CM4Stack, create a
folder called CM4Stack with:

mkdir CM4Stack

Enter the folder with

cd CM4Stack

Changing the Background Colour.

In order to start working with the screen I will make
a base class called cm4base.py

Sudo nano cm4base.py

And the nano editor will appear with a blank
screen.

Next copy the following code from below:

import os

import pygame

import time

import random

class cm4base :

 screen = None;

 def __init__(self):

 disp_no = os.getenv("DISPLAY")

 if disp_no:

 print ("I'm running under
X display = {0}".format(disp_no))

 # Check which frame buffer
drivers are available

 # Start with fbcon since
directfb hangs with composite output

 drivers =
['fb_st7789v','fbcon', 'directfb',
'svgalib']

 found = False

 for driver in drivers:

 # Make sure that
SDL_VIDEODRIVER is set

 if not
os.getenv('SDL_VIDEODRIVER'):

os.putenv('SDL_VIDEODRIVER', driver)

 try:

 pygame.display.init()

 except pygame.error:

 print ('Driver: {0}
failed.'.format(driver))

 continue

 found = True

 break

 if not found:

 raise Exception('No
suitable video driver found!')

 size =
(pygame.display.Info().current_w,
pygame.display.Info().current_h)

 print ("Framebuffer size: %d x
%d" % (size[0], size[1]))

 self.screen =
pygame.display.set_mode(size,
pygame.FULLSCREEN)

 # Clear the screen to start

 self.screen.fill((0, 0, 0))

 # Initialise font support

 pygame.font.init()

 # Render the screen

 pygame.display.update()

 def __del__(self):

 "Destructor to make sure
pygame shuts down, etc."

 def test(self):

 # Fill the screen with blue
(0, 0, 255)

 blue = (0, 0, 255)

 self.screen.fill(blue)

 # Update the display

 pygame.display.update()

Press Control+X to close the Nano editor but type
Y to save the text to the buffer and then hit return
to save the buffer to the file.

Nano will no close and you will return to the
terminal. All I have done so far is to create the base
handle class for writing to the ST7789V2 screen. In
order to change the screen colour we need to add
some code for a runnable program.

Re open cm4base, scroll to the end and add the
following:

cm4screen = cm4base()

cm4screen.test()

time.sleep(5)

The program here consists of only three lines that
create an instance of the cm4base class, calls the
test function and then ends after five seconds.
Save and close the file again to return to the
terminal and then to run the cm4base code use:

sudo python cm4base.py

Hit return and you will see the screen clear and
then turn red before clearing again.

Most of the code is just used for configuring the
frame buffer ready for writing and in order to
change the colour we just alter the line in the
function def test.

def test(self):

 # Fill the screen with red
(255, 0, 0)

 red = (255, 0, 0)

 self.screen.fill(red)

 # Update the display

 pygame.display.update()

Just change the line:

red = (255, 0, 0)

To

blue = (0, 0, 255)

And the following line to:

self.screen.fill(blue)

It is worth noting that when pyscope.py finishes
running the old screen doesn’t get displayed. In
order to restore the default screen we need to
reboot the CM4Stack with:

sudo shutdown -r now

In order to restart the CM4 Demo screen you need
to issue the following from the CM4’s root folder:

/usr/local/m5stack/demo /dev/fb$(cat /
proc/fb | grep fb_st7789v | awk
'{print $1}') 2>&1 >> /dev/null &

While this restarts the demo, we need to find a
way of running this at the end of our program.

Displaying text on the screen.

In this step I will show you how to display text on
the screen and for this I will be using the “Hello
World” example modified to work with the code we
have created so far. Reopen the pyscope.py file
with:

Sudo nano cm4base.py

Which should still be full of code from the last step.

Replace :

cm4screen = cm4base()

cm4screen.test()

time.sleep(5)

With the following code:

cm4screen = cm4base()

Get a refernce to the system font,
size 30

font = pygame.font.Font(None, 30)

Render some white text (pyScope 0.1)
onto text_surface

text_surface = font.render('Hello
World (%s)' % "0.1",

True, (255, 255, 255)) # White text

Blit the text at 10, 0

cm4screen.screen.blit(text_surface,
(10, 0))

Update the display

pygame.display.update()

Wait 10 seconds

time.sleep(10)

Save and close the file again and when you rerun:

sudo python cm4base.py

You will see Hello World printed on the screen.

Auto reload the Demo from code.

After consolation with the Raspberry pi forum, It
turns out that in order to restore the CM4 Stacks
built in demo screen from within the python code,
all you need to do is add the following code as the
last line of the program:

os.system("/usr/local/m5stack/demo /
dev/fb$(cat /proc/fb | grep fb_st7789v
| awk '{print $1}') 2>&1 >> /dev/null
&")

DataSheets
• CM4-datasheet

• CM4IO-datasheet

• ST7789V2

• AW88298

• MP8759

• AW32901

• SY8003

• ME1502

• BM8563

• ATECC608B

This file is located at http://ajbryant.co.uk/Guides/
WIP_CM4StackDevelopmentKit.pdf

https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/docs/datasheet/core/k127%20CM4STACK/cm4-datasheet.pdf?ref=pfpqkvphmgr
https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/docs/datasheet/core/k127%20CM4STACK/cm4io-datasheet.pdf?ref=pfpqkvphmgr
https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/docs/datasheet/unit/lcd/ST7789V2_SPEC_V1.0.pdf?ref=pfpqkvphmgr
https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/docs/datasheet/core/k127%20CM4STACK/AW88298.pdf?ref=pfpqkvphmgr
https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/docs/datasheet/core/k127%20CM4STACK/MP8759.pdf?ref=pfpqkvphmgr
https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/docs/datasheet/core/k127%20CM4STACK/AW32901.PDF?ref=pfpqkvphmgr
https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/docs/datasheet/core/k127%20CM4STACK/SY8003.pdf?ref=pfpqkvphmgr
https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/docs/datasheet/core/k127%20CM4STACK/ME1502.PDF?ref=pfpqkvphmgr
https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/docs/datasheet/core/k127%20CM4STACK/BM8563.pdf?ref=pfpqkvphmgr
https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/docs/datasheet/core/k127%20CM4STACK/ATECC608B.PDF?ref=pfpqkvphmgr
http://ajbryant.co.uk/Guides/WIP_CM4StackDevelopmentKit.pdf
http://ajbryant.co.uk/Guides/WIP_CM4StackDevelopmentKit.pdf
http://ajbryant.co.uk/Guides/WIP_CM4StackDevelopmentKit.pdf

Index
A

ATECC608B

B

C

CM4

Core

Core2

D

Docker

E

F

Framebuffer

G

Grafana

H

I

I2C

Influx DB

Internet Protocol Address

IP Address

J

K

L

M

M5Stack

MicroPython

Mosquitto

MQTT

N

Node Red

O

P

Portaina

Q

R

Raspberry Pi

Reboot

S

Shutdown

SSH

ST7789V

T

U

UIFlow

V

W

X

Y

Z

	Table of Contents
	Introduction
	CM4 Stack Development Kit Features
	Power supply
	Storage
	Opening the Packaging
	Exploring the Outside
	Connecting the Hardware
	First Power Up
	Clock Demo.
	Connecting External Hardware via I2C.
	Accessing the CM4Stack Development Kit in USB Mode.
	Installing the new OS version
	Setting up SSH remote access to the CM4Stack.
	Shutting down the CM4Stack via SSH.
	IP Address (Internet Protocol Address)
	Installing an MQTT Broker.
	Controlling the screen.
	DataSheets
	Index

