
Core S3 Development Kit

Written by
Adam Bryant

Page 1

Introduction. 6

CoreS3 Development Kit Features 6

Powering the Core 6

Exploring the Outside. 7

Front of the Core S3	
7

Bottom of the Core S3	
7

Left side of the CoreS3	
7

Top of the Core S3	
7

Right Side of the Core S3	
8

The CoreS3 Base	
8

Factory Demo 9

Instilling the UIFlow 2.0 Firmware with M5Burner. 13

Programming In UIFlow 2.0 14

Selecting the CoreS3 for programming.	
14

Hello World.	
15

Title.	
16

Set Title Text X Position	
16

Set Title Text Colour and Background Colour	
16

Set Title Text	
16

Set Title Show	
16

Label	
17

Set Label X Y	
17

Set Label Color	
17

Set Label Size	
17

Set Label Text	
17

Set Label Font	
18

Set Label Show	
18

Label Example	
18

Label+	
19

Get Display Data	
20

Is Valid Data	
21

Set Update Enable	
22

Set Update Interval	
22

Set Label+ Text	
22

Set Label+ X Y	
22

Set Label+ Color	
22

Page 2

Set Label+ Size	
23

Set Label+ Font	
23

Set Label+ Show	
23

Image	
23

Set Image X and Y	
24

Set Image	
24

Set Image Show/Hide	
24

Image+	
24

Set Image+ Update Enable	
25

Set Image+ Update Interval	
25

Set Image+ X and Y	
25

Set Image Show/Hide	
25

Rectangle.	
26

Set Rectangle X and Y	
26

Set Rectangle Boarder Colour and Body Fill Colour	
26

Set Rectangle Width and Height	
26

Set Rectangle Show/Hide	
26

Circle	
27

Set Circle X and Y	
27

Set Circle Boarder Colour and Body Fill Colour	
27

Set Circle Radius.	
27

Set Circle Show/Hide	
27

Line	
28

Set Line X0,Y0, X1,Y1	
28

Set Line Colour	
28

Set Line Show/Hide	
28

Triangle	
29

Set Triangle X0, Y0, X1, Y1, X2, Y3	
29

Set Triangle Boarder Colour and Body Fill Colour	
29

Screen	
29

Set Screen Brightness	
29

Set Screen Colour	
30

Set Screen Rotation	
30

Camera	
30

Display Camera to Screen.	
32

Camera Set X,Y width and Height.	
32

Page 3

Camera Show	
32

Get camera JPG bytes and BMP Bytes	
33

Set Camera Contrast	
33

Software and Hardware Modules 35

Time	
36

Get Time Zone.	
36

Set Time Zone	
36

Sleep	
37

Get UTC Time	
37

Get Local Timestamp Since January 1 1970	
38

Get Local Time	
39

Get Time Stamp Since	
40

Counters and ticks	
40

Get Ticks in Milliseconds	
40

Get Ticks in MicroSeconds	
40

Get CPU Ticks Count	
40

Ticks Add delta	
41

Ticks Difference	
41

Get System Uptime.	
41

MQTT	
41

Common Functions. 43

Variable.	
43

Set Variable to	
43

Change Variable.	
44

Variable Value	
44

JSON	
45

Dumps To JSON	
45

Load JSON	
45

Mathematic Functions	
46

Numbers	
46

Common Equation,	
46

Formula calculation	
46

Mathematical Constants	
47

Remainder of	
47

Value is even	
47

Sum of list	
48

Page 4

Random Fraction	
48

Random Integer,	
48

Round	
48

Square Root	
48

Trigonometric functions	
48

Convert to int	
49

Convert to Float,	
49

Reserve Decimal Fraction	
49

CoreS3/UIFlow Update Log 51

UIFlow Firmware	
51

UIFlow WEB IDE	
52

Exploring the Micropython Modules 55

Page 5

Introduction.
The CoreS3 Development Kit is the latest generation in the M5Stack Core Development Kit series.
The CoreS3 has been designed around the ESP32-S3, dual-core Xtensa LX7 processor, running
at a speed of 240MHz and comes with built in ‘WiFi functions, and has onboard 16MFLASH and
8M-PSRAM.

CoreS3 Development Kit Features
The CoreS3 features consist of:

• ESP32-S3

• Duel Core Xtensa LX7 CPU running @ 240Mhz,

• 2.4Ghz Wifi,

• 16MB Flash,

• 8MB PSRam.

• AXP2101 Power Management chip controlling power from:

• USB-C 5V,

• DC 9-24V (though the base connector),

• 3.7V 500mAH battery located in the base.

• Built in camera featuring:

• Galaxy Core GC0308 0.3MP camera,

• LTR-553ALS-WA Light Sensor,

• 640X480 (VGA) resolution @ 30fps,

• 30cm to 500CM Focal distance,

• M12X0.5 thread Lens.

• 2.0” IPS LCD

• 320X240 pixel resolution,

• Capacitive Multi Touch,

• Duel Microphones connected to a ES7210 Audio decoder,

• AW88298 Amplifier,

• 1W Speaker,

• BM1270 6 Axis IMU,

• BMM150 Geomagnetic Sensor

• BM8563 RTC,

Powering the Core

As mentioned earlier, there is three ways in which the CoreS3 can be powered.

On the left hand side you will find the USBC port which allows you to power the CoreS3 from a
host PC or a USB battery pack. In UiFlow mode, the CoreS3 draws 4.92V @0.13A.

On the bottom of the CoreS3 we have a power jack which accepts 9 to 24V DC and is run through
the power switch next to it to allow the CoreS3 to be switched off when not connected via USB.

The ``size of the Jack is 5.5mm OD and 2.1mm pin size.

Page 6

Exploring the Outside.
Front of the Core S3

On the front of the Core S3 we have the
320X240 pixel (2.0”) IPS LCD. Covering most
of the from is the capacitive multitouch screen
sensor with three dedicated touch zones
available in code as buttons A, B and C.
These are not clearly marked as zone A shares
the same location and the left microphone,
Zone B shares the same location as the
camera and zone C shares the same location
as the right microphone. Between zones B
and C you will find two LEDs that are the
LTR-553ALS light sensor.

Bottom of the Core S3

On the bottom of the Core S3 Development kit
you will find the. Micro SD card slot, and the

reset button which is used to reset the CoreS3
but if held down for more then three seconds,
will put the Core S3 into Programming mode.
On the base you will find the DC 9-24V power
jack and the power switch that provides
power from the base to the core.

Left side of the CoreS3

On the left we find the core’s power button
which you need to hold down for five seconds
to power off, the USB programming/
communications port, and the red Port A I2C
connector for connecting to I2C ‘Grove) units

Top of the Core S3

Page 7

The Top of the Core is clear but on the Base
you will find the black Analog “Grove” port
and the blue UART “grove port.

Right Side of the Core S3

On the right side you will find three rows of
holes which cover the speaker.

The CoreS3 Base

On the base of the Core S3 you will find for
removable mounting lugs for surface
mounting the CoreS3, two M3 threaded brass
inserts for mounting from behind and the
recess section is for mounting to “Top Hat”
Din Rail.

On the fight hand side you can see the
“MBUS” connector which is a 15X2 pin
connector with the following pinout:

Unfortunately you will see that the pinout is
different to the Core2 meaning that not all
modules will be compatible.

Page 8

You can find a sticker on the inside of the
CoreS3 stuck to the shield which has the
MBus pinout printed on it. 

Factory Demo
The CoreS3 Development kit will normally
come with the factory test firmware
preinstalled from M5Stack. When first
powered up the factory test will display a
screen showing the following:

This is the initial boot screen for the factory
demo and shows the internal hardware laid on
top of the ESP logo. Tapping the screen
brings us into the factory demo:

As the WIFI logo is the first icon on the right,
tapping on it will bring up the wifi scanner that
shows wifi networks in the area. Unfortunately,
due to the limitations of the WIFI stack used in
the ESP32, only 2.4GHz channels will be
detected.

Page 9

The next screen is an example displaying the
image captured from the built in camera
located in the bottom bezel.

Here you can see the camera recording the
camera used to take the screen photos. Due
to the overhead lighting on the desk the
LTR-553 light sensor doesn’t seam to want to
read anything.

This screen is showing the audio being picked
up by the duel microphones.

Next we have the power monitoring example.
If you remove the USB cable when powered
you will see the screen change to show power
coming from the battery.

Page 10

Next we have the IMU example. The scrolling
message is informing users that the IMU
needs calibrating first by pressing on the
centre of the screen until you hear a bleep and
then moving the CoreS3 in a figure of 8 until
the second bleep to calibrate.

Next we have the SDCard example which list
the files on an SDCard along with the file type
and the size of the file.

After the SDCard example we have the
touchscreen example which draws on the
screen when you touch the white area.

Last is the I2C scanner which detects I2C
devices connected to the internal I2C bus.
Connecting any I2C devices to the Red I2C
port will not show the new devices address.

Tapping the icon on the top right will open the
“Shutdown menu”

Page 11

In this screen we can change the screen
backlight brightness, shutdown the CoreS3 or
Put it to sleep. Unfortunately the backlight
setting is now saved and when the CoreS3 is
rebooted, it will return to full brightness. 

Page 12

Instilling the UIFlow 2.0 Firmware with M5Burner.
In order to install the UIFlow2.0 firmware used
to program the CoreS3 we need to download
M5Burner from the M5Stack website here:
https://docs.m5stack.com/en/download?
ref=pfpqkvphmgr

Once downloaded, you need to save
M5Burner to a stable location, On OSX based
computer, M5Burner need to be installed into
the “Applications menu so that it can be found
in the applications launcher.

If you don’t install it to the application folder
on OSX based computers, M5Burner will
throw up errors about missing development
file or just not run at all.

Open M5Burner and if not already logged in,
fill in your forum log in details to connect
M5Burner to the UIFlow firmware.

You need to log in to the UIFlow server using
M5Burner because S3 based devices connect
to UIFlow2.0 in a different way that
automatically add them to UIFLow 2.0 unlike
with previous generation M5Stack controllers.

In the above screen shoot you can see what
firmware is currently available to download.
UIFlow firmware is normally the first firmware
available with the factory demo next in the list.
The Last two (at time of writing) are firmware
for the StackChan personal assistants.

Click on the download button to download the
latest UIFlow2.0 version (in the screenshot
you can see that I have already downloaded
the UIFlow2.0 firmware.

Once downloaded you need to hold the
“Reset/Boot Mode” button on the bottom of
the CoreS3 to get the CoreS3 into boot loader
mode. You can see in this video: https://
www.youtube.com/watch?v=SgDRYp2tiQw
That you need to hold the button down in
order to get the green led to light up for
M5Burner to connect but even then it can be
tricky.

Once M5Burner connects, you will need to
erase the CoreS3 first before installing the
new firmware, You will also notice in the video
that I mistimed the button press and ended up
“Softbricking” the CoreS3 and spent ages
trying to reset it to restart the burn process.

Once you erase the CoreS3 you will be
brought back to the main screen shown
above. Click on the “Burn” button again and
this time you will see the following message
asking if you want to bind the CoreS3 to your
account.

Unlike with previous generations of M5Stack
controllers where you had to manually add the
device code into UIFlow, UIFlow2
automatically adds any ESP32-S3 based
controller to your account which is created
when you order direct from M5Stack or when
you register with the forums found here:
https://community.m5stack.com/

Click the “yes” button to add the CoreS3 to
your account and continue the burning
process. 

Page 13

https://docs.m5stack.com/en/download?ref=pfpqkvphmgr
https://docs.m5stack.com/en/download?ref=pfpqkvphmgr
https://www.youtube.com/watch?v=SgDRYp2tiQw
https://www.youtube.com/watch?v=SgDRYp2tiQw
https://community.m5stack.com/

Programming In UIFlow 2.0

The Primary method for programming the
CoreS3 Development kit is to use UIFLow
which is a graphical IDE (integrated
Development Environment) built on top of
Micropython. Because UIFlow uses the
Micropython programming language it means
that if you have used any Adafruit or
Raspberry pi devices, then you are already
familiar and experienced in the Micropython.

UIFlow consist of three main parts as shown
in the screenshot above. On the left is the GUI
(Graphical User Interface) editor showing the
CoreS3 which is used for laying out GUI
elements while below we have the new
“Resources” selector that allows you to chose
which function and units to add to your
programs.

In the middle we have the block menu where
you can select which code blocks to add to
the program. When you select function and
units with the resource selector additional
blocks will be added to this list.

On the right we have the programming
environment which is used to assemble
blocks into code.

The three icons above the environment allow
you to select between the default mode as
show, block and Micropython Code view:

Or just Micropython code view:

While you can make changes in the block
mode and view the code changes in the
Micropython mode, you cant make changes in
the micropython and see changes in the block
mode as any new code you add will not have
the corresponding code blocks.

Selecting the CoreS3 for
programming.

Once you have the latest UIFlow2 firmware
installed and bound to you account, you need
to select it. At the bottom of the page next to
the “Run” button you may find an red shape
with the text “Select Device”, click on this to
open the UIFlow2 device menu:

If this is your first time then it may be empty or
showing one device. I have four ESP32-S3
based devices that I am testing and so there
are four visible. Click on the CoreS3 and you
should see the code shown on the Core3’s
screen but with most of the characters
replaced with stars. The circle at the top fight
of the icon should show green if the CoreS3 is
connected or red if it cant be found by the
M5Stack server.

Page 14

Make sure the Core S3 is still selected and
click on confirm to use the CoreS3 in UIFlow.

While UIFlow2 is the preferred method for
programming the CoreS33 based devices,
because the firmware is built on micropython,
you can use other programming environments
to program the CoreS3. With each block I will
show the API call as shown by UIFlow in the
Micropython View.

Hello World.
In order to get used to UIFlow, lets start with
the basic “Hello World” example.

To the Left of the virtual GUI editor we have
eight GUI icons representing the eight GUI
elements we can use while above we have
three icons for changing how the GUI editor is
viewed. By default, when UIFlow is loaded the
first view will be set making the GUI editor
take up between 1/4 to 1/3 of the available
screen. The middle icon looks like it is
supposed to set the layout to use half of the
screen but doesn’t seam to work while the
right icon makes the GUI editor take over the
full screen.

In micropython the GUI elements are part of
the “Widgets” submodule found inside of the
“M5”Module.

To access the modules directly in micropython
you need to use another IDE like Thonny or
Mu, connect to the CoreS3 in shell mode and
then type:

import M5

To import the module and then

dir(M5)

to show the submodules.

Micropython is running in REPL mode in the
shell and is case sensitive. If you get a
“Traceback” error check that you have spelled

the modules with the correct upper or lower
case letters.

When using Thonny we also get a second list
shown on the right of the screen with the
modules:

To view the Widgets modules type:

from M5 import Widgets

Followed by:

dir(Widgets)

The eight GUI elements available in the editor
are as follows:

Page 15

Title.
The Title elements add a title bar to the top of
the CoreS3’s screen. By default the title bar
will be blue (#0000ff) with white (#ffffff) text in
the Dejavu Sans 18 font.

The GUI editor give the ability to change the
initial setting and colours for basic operation
but for more functions we need to switch back
to the normal UIFlow2.0 mode by click on the
“Back” button.

Here we can see a new menu item has been
added called “Title”. Clicking on “Title” we
display the following new block functions:

Set Title Text X Position

The set title text X position block is used to
align the title text in the title bar. The position
can be any number but over 320 will place the
text off the screen.

The Micropython api for set title position is as
follows:

title0.setTextCursor(x=0)

Set Title Text Colour and
Background Colour

The Set tile text and background colour block
is used to change the text and background
colours and can be used for indicating a
status change.

The Micropython api for set title text colour is
as follows:

title0.setColor(text_c=0x6600cc,
bg_c=0x6600cc)

Set Title Text

The set title text block is used to change the
text shown in the title bar. The text can be any
string or any values returned from sensors and
converted to a string.

The Micropython api for set title text is as
follows:

title0.setText(‘Title’)

Set Title Show

The Set title Show block is used to set the
visibility of the title bar so that it can be hidden
when not needed.

The Micropython api for set title show is as
follows:

title0.setVisible(True)

Page 16

Label
Next we have the Label blocks. There are two
different Label blocks, the Label and Label+
for regular text display you use the Label
where as for retrieving data from a page, you
use Label+.

To add a Label or Label+ to the screen, drag
the Label or Label+ on to the screen and the
text label will appear in white with a black
background.

Set Label X Y

The set label XY block is used to manually
override the position of the label on a screen
allowing the position to be changed and
moved around.

The Micropython API for the set label X Y is:

label0.setCursor(x=0, y=0)

Set Label Color

The Set Label colour block is used to change
the colour of the labels text. If you click on the
“Palette” block’s dropdown arrow you get the
option to change colour by selecting from the
pallet, setting using a hexadecimal value:

Or by setting the decimal value:

The Micropython API for the Set colour block
is:

label0.setColor(0xff0000)

And is always a Hexadecimal value.

For a list of the colours and values you can
find many charts and tables online but the
best resource so far is the colour subset of
https://www.w3schools.com/colors/
default.asp

Set Label Size

The set label size block is used to set the font
size of the label se in the Set Label Font block
and is used to increase or decrease the
default fault set by that block.

The Micropython API for this block is:

label0.setSize(1.5)

Set Label Text

Page 17

https://www.w3schools.com/colors/default.asp
https://www.w3schools.com/colors/default.asp

The set label text block is used to show a
string of text. Because the text section is also
a space for a value block, it can be used to
show the value of a string formatted variable
or the values returned from sensors.

The Micropython API for the set label text box
is:

label0.setText(str(‘'))

Set Label Font

The Set Label Font is used to control which
font is used by the Label to display the text.

Currently their only seven different sizes of the
DejaVu font along with three none English
fonts for the Chinese, Japanese and Korean
languages.

The Micropython code for the font block is:

label0.setFont(Widgets.FONTS.DejaV
u9)

Set Label Show

The set label show block is used to make text
visible or hidden during a programs runtime.
Set the block to “Show” to make the text
visible or “hide” to make the text invisible.

The Micropython API for the Set label show
block is:

label0.setVisible(True)

Or

label0.setVisible(False)

Label Example

In the following example I use three labels to
show the temperature, pressure and humidity
from the ENVIII unit.

When run on the Core S3, the screen will
display the following:

The Micropython code for this example is as
follows:

import os, sys, io
import M5
from M5 import *
from hardware import *
from unit import *

label0 = None
label1 = None
label2 = None
i2c0 = None
env3_0 = None

def setup():

Page 18

 global label0, label1, label2,
i2c0, env3_0

 i2c0 = I2C(0, scl=Pin(1),
sda=Pin(2), freq=100000)
 env3_0 = ENV(i2c=i2c0, type=3)
 M5.begin()
 Widgets.fillScreen(0x222222)
 label0 = Widgets.Label("Text",
3, 38, 1.0, 0xffffff, 0x222222,
Widgets.FONTS.DejaVu18)
 label1 = Widgets.Label("Text",
11, 87, 1.0, 0xffffff, 0x222222,
Widgets.FONTS.DejaVu18)
 label2 = Widgets.Label("Text",
6, 129, 1.0, 0xffffff, 0x222222,
Widgets.FONTS.DejaVu18)

def loop():
 global label0, label1, label2,
i2c0, env3_0
 M5.update()

label0.setText(str(((str('Temperat
ure: ') +
str((env3_0.read_temperature()))))
))

label1.setText(str(((str('Humidity
: ') +
str((env3_0.read_humidity()))))))

label2.setText(str(((str('Pressure
: ') +
str((env3_0.read_pressure()))))))

if __name__ == '__main__':
 try:
 setup()
 while True:
 loop()
 except (Exception,
KeyboardInterrupt) as e:
 try:
 from utility import
print_error_msg
 print_error_msg(e)
 except ImportError:
 print("please update to
latest firmware")

Label+
The label+ blocks are used to retrieve data
from a source and display them on the screen
as a label.

In order to use the Label+ blocks you need to
supply a source address in the setting panel
on the right. For example, the Label+can be
used to retrieve forum public data for
example:

Here I have set the address to the user public
data file which is a JSON file with:

https://community.m5stack.com/api/
user/<user_name>/

And chose the JSON field of Location:

Page 19

Then using the following UIFLow2 code
(UIFlow1.X code is almost the same):

The Core S3 shows on the screen what my
location is set to in the forum:

Get Display Data

The get display data block is used to return
data from the field specified in the settings. In
the previous example I used the “location”
field and so the location “The Void between
Worlds.” That I specified in my forum profile is
shown on screen.

You can retrieve numerical data from a field
but it needs to be converted into a text string
with the text blocks as shown below.

The Micropython api for the Get display data
block is:

label_plus0.get_data()

The Micropython code for the example code
is as follows:

import os, sys, io
import M5
from M5 import *
from label_plus import LabelPlus

label_plus0 = None
label0 = None

def setup():
 global label_plus0, label0

 M5.begin()
 Widgets.fillScreen(0x222222)
 label_plus0 = LabelPlus("Text",
10, 28, 1.0, 0xffffff, 0x222222,
Widgets.FONTS.DejaVu18, "https://
community.m5stack.com/api/user/
ajb2k3/", 3000, True, "location",
"error", 0xFF0000)
 label0 = Widgets.Label("Text",
11, 108, 1.0, 0xffffff, 0x222222,
Widgets.FONTS.DejaVu18)

Page 20

def loop():
 global label_plus0, label0
 M5.update()

label_plus0.setText(str((label_plu
s0.get_data())))

if __name__ == '__main__':
 try:
 setup()
 while True:
 loop()
 except (Exception,
KeyboardInterrupt) as e:
 try:
 from utility import
print_error_msg
 print_error_msg(e)
 except ImportError:
 print("please update to
latest firmware")

Is Valid Data

The Is Valid data block is used to check if
there is a valid data stream at the location and
will return True or False depending on what it
finds.

In the following example I have just extended
the previous example to run a check to see if
the data is valid.

You can see here that I just used a basic label
for the check as adding a second Set Label+
box will send a second stream request to the
stream host instead of just checking for the
presence of the valid data stream.

The Micropython api call for this block is:

label_plus0.is_valid_data()

And the Micropython complete code for the
example is:

import os, sys, io
import M5
from M5 import *
from label_plus import LabelPlus

label_plus0 = None
label0 = None

def setup():
 global label_plus0, label0

 M5.begin()
 Widgets.fillScreen(0x222222)
 label_plus0 = LabelPlus("Text",
10, 28, 1.0, 0xffffff, 0x222222,
Widgets.FONTS.DejaVu18, "https://
community.m5stack.com/api/user/
ajb2k3/", 3000, True, "location",
"error", 0xFF0000)
 label0 = Widgets.Label("Text",
11, 108, 1.0, 0xffffff, 0x222222,
Widgets.FONTS.DejaVu18)

def loop():
 global label_plus0, label0
 M5.update()

label_plus0.setText(str((label_plu
s0.get_data())))

label0.setText(str((label_plus0.is
_valid_data())))

if __name__ == '__main__':
 try:
 setup()
 while True:
 loop()
 except (Exception,
KeyboardInterrupt) as e:
 try:
 from utility import
print_error_msg
 print_error_msg(e)
 except ImportError:
 print("please update to
latest firmware”)

Page 21

Set Update Enable

The Set Update Enable block is used to
control if the Label+ will constantly check the
source JSON data file for changes overriding
the initial setting in the dialog.

The Micropython code for this block is:

label_plus0.set_update_enable(False
)

Or

label_plus0.set_update_enable(True)

This block can be used with the Set Update
Interval block to control how often the code
will check the source JSON data file.

Set Update Interval

The Set Update Interval block is used to
control the delay between update request sent
by the code. The block can be used with the
previous block to control when and how ofter
to look for updates.

The Micropython code for this block is:

label_plus0.set_update_period(5000
)

Set Label+ Text

The set label text block is used to show a
string of text. Because the text section is also
a space for a value block, it can be used to
show the value of a string formatted variable
or the values returned from sensors.

The Micropython API for the set label text box
is:

label_plus0.setText(str(‘’))

Set Label+ X Y

The set label+ XY block is used to manually
override the position of the label on a screen
allowing the position to be changed and
moved around.

The Micropython API for the set label+ X Y is:

label_plus0.setCursor(x=0, y=0)

Set Label+ Color

The Set Label+ colour block is used to change
the colour of the labels text. If you click on the
“Palette” block’s dropdown arrow you get the
option to change colour by selecting from the
pallet, setting using a hexadecimal value:

Or by setting the decimal value:

The Micropython API for the Set colour block
is:

label_plus0.setColor(0xff0000)

And is always a Hexadecimal value.

For a list of the colours and values you can
find many charts and tables online but the
best resource so far is the colour subset of
https://www.w3schools.com/colors/
default.asp

Page 22

https://www.w3schools.com/colors/default.asp
https://www.w3schools.com/colors/default.asp

Set Label+ Size

The set label+ size block is used to set the
font size of the label se in the Set Label Font
block and is used to increase or decrease the
default fault set by that block.

The Micropython API for this block is:

label_plus0.setSize(1.5)

Set Label+ Font

The Set Label+ Font is used to control which
font is used by the Label+ to display the text.

Currently their only seven different sizes of the
DejaVu font along with three none English
fonts for the Chinese, Japanese and Korean
languages.

The Micropython code for the font block is:

label0.setFont(Widgets.FONTS.DejaV
u9)

Set Label+ Show

The set label+ show block is used to make
text visible or hidden during a programs

runtime. Set the block to “Show” to make the
text visible or “hide” to make the text invisible.

The Micropython API for the Set label show
block is:

label_plus0.setVisible(True)

Or

label_plus0.setVisible(False)

Image

The Image element is used to load and display
images from memory onto the CoreS3’s
screen.

There are requirements for images in that they
must be less than 320x240Pixels in size, must
be less than 100KB in size when saved and
have a filename of less than 30 characters
long.

The default settings for the Image element is
as follows:

The settings allow you to change the name
that the functions will use, the default X and Y
location, and the GUI layer that the image will
be stored on. The dropdown box is for
selecting the initial image to be displayed from
those in the memory. The first button is for
uploading an image to the CoreS3 and the
next button is used to refresh the list if an
uploaded image doesn’t show.

Page 23

There are four code blocks that are available
for controlling images consisting of:

Set Image X and Y,

Set Image (textbox),

Set Image (dropdown menu):

Set Image Show.

Set Image X and Y

The Set Image X and Y block is used to set or
move images around the screen from within
code.

The Micropython API for the set label X Y is:

Image0.setCursor(x=0, y=0)

Set Image

The two Set Image blocks which looking the
same have slightly different operating
methods. While the Micropython API looks the
same for both:

image0.setImage("res/img/
extio2.jpeg")
image0.setImage(“res/img/
default.png")

The big difference is that the dropdown
version of the block will only allow images to
be selected from the res/img folder, the text
block version allows users to set images
stored in other locations.

Set Image Show/Hide

The Set image Show/Hide block is used for
setting if an image is visible or hidden from
within code.

The Micropython API for this block is:

image0.setVisible(True)

Or

image0.setVisible(False)

Image+

The Image+ element are used to load images
from an online source. While this opens up
possibilities, the same image restrictions still
apply.

The Default settings for the Image+ element is
as follows.

In order to use the Image+ blocks you need to
supply a source address in the setting panel
on the right. For example, the Image+can be
used to retrieve forum public data for
example, in order to display the forum avatar
image on a CoreS3 screen, you need to type
in the location of the image into the Data
Source box shown in the image above. To find
the address, the simple way is to open your
forum profile in a web browser,

Page 24

right click the image to open in a new tab and
then just copy the address shown in the
address bar.

The blocks for controlling the Image+
functions are as follows:

Set Image+ Update Enable

The Set Image+ Update enable function can
be used used if the source image changes for
example, a camera feed. If as in my example
above, you are only referencing a fixed none
changing image, make sure this is set to false
otherwise the source will be inundated with
request which could result in the server
hosting the image going offline.

The Micropython API for the Image+ update
function is:

image_plus0.set_update_enable(False)

Or

image_plus0.set_update_enable(True)

Set Image+ Update Interval

The Set Image+ update Interval block is used
as a delay between request for updated
images from the image source. This period is
measured in milliseconds.

The Micropython api for the Set Update Image
Interval is:

image_plus0.set_update_period(5000
)

Set Image+ X and Y

The Set Image+ Image X and Y block is used
to set or move images around the screen from
within code.

The Micropython API for the Set Image+ X
and Y is:

image_plus0.setCursor(x=0, y=0)

Set Image Show/Hide

The Set Image Show/Hide block is used for
setting if an image is visible or hidden from
within code.

The Micropython API for this block is:

image_plus0.setVisible(True)

Or

image_plus0.setVisible(False)

Page 25

Rectangle.

The Rectangle GUI element shares many
functions with the other units but is designed
to create square or rectangle elements on the
screen.

The default settings for the Rectangle element
is as follows:

Unlike previous elements we not have a
border and body colour.

Set Rectangle X and Y

The Set Rectangle Image X and Y block is
used to set or move images around the screen
from within code.

The Micropython API for the Set Rectangle X
and Y is:

rect0.setCursor(x=0, y=0)

Set Rectangle Boarder Colour
and Body Fill Colour

The set Rectangle Border Colour and Body Fill
colour block is used to control the border and
infill colour of the rectangle. By default it is set
to white and can be changed in the GUI editor
but this block allows that set colour to be over
ridden in code.

You can also set the colour using RGB:

Or with Hexadecimal:

The Micropython api for set Rectangle Border
Colour and Body Fill colour is as follows:

rect0.setColor(color=0x6600cc,
fill_c=0x6600cc)

Set Rectangle Width and
Height

The Set Rectangle Width and Heigh block is
used to set or move images around the screen
from within code.

The Micropython API for the Set Rectangle
Width and Height is:

rect0.setSize(w=0, h=0)

Set Rectangle Show/Hide

The Set Rectangle Show/Hide block is used
for setting if an image is visible or hidden from
within code.

The Micropython API for this block is:

Page 26

rect0.setVisible(True)

Or

rect0.setVisible(False)

Circle

Like the rectangle, the Circle GUI element
shares functions similar to the other units.

The big difference between the Rectangle
element and the Circle element is that the
Circle does not have a height and width block
but instead has a radius block.

The default settings for the Circle element is
as follows:

Set Circle X and Y

The Set Circle X and Y block is used to set or
move images around the screen from within
code.

The Micropython API for the set Circle X and Y
is:

circle0.setCursor(x=0, y=0)

Set Circle Boarder Colour and
Body Fill Colour

The set Circle Border Colour and Body Fill
colour block is used to control the border and
infill colour of the circle. By default it is set to
white and can be changed in the GUI editor
but this block allows that set colour to be over
ridden in code.

You can also set the colour using RGB:

Or with Hexadecimal:

The Micropython api for set Circle Border
Colour and Body Fill colour is as follows:

circle0.setColor(color=0x6600cc,
fill_c=0x6600cc)

Set Circle Radius.

The Set Circle Radius is used to set the size of
the circle. The radius is the distance from the
middle of the circle to the outside edge.

The Micropython API for Set Circle radius is:

circle0.setRadius(r=0)

Set Circle Show/Hide

The Set Circle Show/Hide block is used for
setting if an image is visible or hidden from
within code.

The Micropython API for this block is:

Page 27

circle0.setVisible(True)

Or

rcircle0.setVisible(False)

Line

The line GUI element, unlike other elements
doesn’t have a Set XY or a Height and width
block to control the placement and size. Like
the Triangle element that follows, the line
instead has a block that is used to set the X
and Y coordinates of each of the lines ends.

You can also see that the default setting are
also less then other elements.

Because of the simplicity of the line, there is
only three blocks available in UIFlow to control
the line.

Set Line X0,Y0, X1,Y1

As mentioned earlier, the line element has one
block that control the X&Y location for each
end of the line and then Micropython draws
the line between the defined coordinates.

The Micropython code for this block is:

line0.setPoints(x0=0, y0=0, x1=0,
y1=0)

Set Line Colour

The Set Line colour block is used to change
the colour of the line drawn between the X
and Y locations. If you click on the “Palette”
block’s dropdown arrow you get the option to
change colour by selecting from the pallet,
setting using a hexadecimal value:

Or by setting the decimal value:

The Micropython API for the Set colour block
is:

line0.setColor(0xff0000)

And is always a Hexadecimal value.

For a list of the colours and values you can
find many charts and tables online but the
best resource so far is the colour subset of
https://www.w3schools.com/colors/
default.asp

Set Line Show/Hide

Page 28

https://www.w3schools.com/colors/default.asp
https://www.w3schools.com/colors/default.asp

The Set line Show/Hide block is used for
setting if an image is visible or hidden from
within code.

The Micropython API for this block is:

line0.setVisible(True)

Or

line0.setVisible(False)

Triangle

Line the Line element, the Triangle element
doesn’t have a SET X&Y for the whole element
but instead has a block for setting the X&Y
locations for the three separate corners of the
triangle.

The default settings for the Triangle element
are shown below:

The Triangle has three blocks available to use.

Set Triangle X0, Y0, X1, Y1, X2,
Y3

As mentioned earlier, the Triangle element has
one block that controls the X&Y location for
each corner of the triangle and then
Micropython draws the line between the
defined coordinates filling the inside space in
code.

The Micropython code for this block is:

triangle0.setPoints(x0=0, y0=0,
x1=0, y1=0, x2=0, y2=0)

Set Triangle Boarder Colour
and Body Fill Colour

The set triangle Border Colour and Body Fill
colour block is used to control the border and
infill colour of the circle. By default it is set to
white and can be changed in the GUI editor
but this block allows that set colour to be over
ridden in code.

You can also set the colour using RGB:

Or with Hexadecimal:

The Micropython api for set Circle Border
Colour and Body Fill colour is as follows:

triangle0.setColor(color=0x6600cc,
fill_c=0x6600cc)

Screen
The Last set of blocks is always added to the
menu as it control the screen and consists of
three blocks.

Set Screen Brightness

Page 29

The set screen Brightness allows programs to
control the brightness of the screen. By
default, this is set to read the value from the
internal setting in the firmware.

The Micropython api for set brightness is as
follows:

Widgets.setBrightness(0)

Set Screen Colour

The set screen colour is used to control the
background colour of the screen. By default it
is set to black and can be changed in the GUI
editor but this block allows that set colour to
be over ridden in code.

The Micropython api for set screen colour is
as follows:

Widgets.fillScreen(0x6600cc)

Set Screen Rotation

The Last screen function is the set screen
rotation block and is used to control how the
GUI elements are displayed on the screen. By
default, the screen will show text from left to
right (western style) when the camera is at the
bottom of the screen.

The Micropython api for set screen rotation is
as follows:

Widgets.setRotation(0)

Camera
As mentioned earlier, the CoreS3 has a 2Mp
camera mounted in the centre of the bottom
bezel where the “B Button” zone is found.

Support for the camera was added in release
Alpha16 and can be used by dragging the
camera icon onto the screen area.

To access the camera under Micropython
without UIFlow you need to import the
m5camera module with:

Import m5camera

And then you can view the functions with:

dir(m5camera)

>>> dir(m5camera)
__class__
__name__
__file__
FRAME_240X240
FRAME_96X96
FRAME_CIF
FRAME_HQVGA
FRAME_HVGA
FRAME_QCIF

Page 30

FRAME_QQVGA
FRAME_QVGA
FRAME_VGA
GRAYSCALE
M5
RGB565
YUV422
camera
capture
capture_to_bmp
capture_to_jpg
colorbar
contrast
deinit
framesize’
gc
global_gain
hmirror
init
namedtuple
pixformat
setCursor
setVisible
skip_frames
vflip
_x
_y
FrameSize
disp_to_screen
IN_DRAM
IN_PSRAM'
_frame_sizes
_width
_height
_max_width
_max_height
_visible

Looking at the default settings:

we see the normal X and Y position options
along with the default screen size of 320x240
pixel.

Next we have an option to set the pixel format
as RGB565 or YUV422 which is the colour
palette encoding.

RGB565 is used to define separate 16bit
colour values for the RGB channels where as
YUV422 or Y UV uses 16bit values for
brightness (Y) and Red and blue chrominance
values.

Size of output image is used to set the
captured image pixel resolution. By default
this is set to QVGA (320x240) but can be
changed to:

• 96x96,

• QQVGA(160x120),

• QCIF(170x144),

• HQVGA(20x176),

• 240x240,

• QVGA(320x240)

• CIF(400x296)

• HVGA(480x360)

• VGA(640x480)

Number of frame buffers is a value of sections
of ram put aside for background graphics
work before the graphics are sent to the
screen. By default there are two buffers, one
for the camera and one for the screen. The
more frame buffers used, the last ram is
available for program use.

Next we have the frame buffer location which
allows up to place the frame buffers in
PSRAM or the inbuilt SRAM.

The ESP32S3 only has 512KB of SRAM built
in but M5Stack have added 8MB of PSRAM
so don’t change this setting.

The following demo program access the
content of the cameras frame buffer, passes it
to the screen frame buffer before passing it to
the screen for display.

Page 31

You can see this example running in the June
2023 M5Stack roundup video here: June
09-06-2023 roundup

The Micropython code for this example is as
follows:

import os, sys, io
import M5
from M5 import *
import m5camera

def setup():

 M5.begin()
 Widgets.fillScreen(0x222222)
 m5camera.init(0, 0, 320, 240,
pixformat=m5camera.RGB565,
framesize=m5camera.FRAME_QVGA,
fb_count=2,
fb_location=m5camera.IN_PSRAM)

def loop():
 M5.update()
 m5camera.disp_to_screen()

if __name__ == '__main__':
 try:

 setup()
 while True:
 loop()
 except (Exception,
KeyboardInterrupt) as e:
 try:
 from utility import
print_error_msg
 print_error_msg(e)
 except ImportError:
 print("please update to
latest firmware”)

Display Camera to Screen.

I have started with the camera display to
screen block because this is the only one
used in the basic example. As mentioned
previously, this block retrieves the content of
the cameras frame buffer and send it to the
screens frame buffer so that the screen can
show the captured image data.

The Micropython API for this block is:

m5camera.disp_to_screen()

Camera Set X,Y width and
Height.

The camera set X,Y, width and height block is
used to override the default settings for X, Y,
width and height.

The Micropython code for this is:

m5camera.setCursor(x=0, y=0, w=0,
h=0)

Camera Show

Just like with many of the other GUI elements,
the camera show block is used to make the
output visible or hidden.

Page 32

https://youtu.be/b_xM-Pu5wyo
https://youtu.be/b_xM-Pu5wyo
https://www.youtube.com/watch?v=b_xM-Pu5wyo

The Micropython code for this block is:

m5camera.setVisible(True)

Or

m5camera.setVisible(False)

Camera Deinit

The camera deist block is used to deactivate
the camera so that it is not recording all the
time.

This is useful when you need to save memory
and/or battery life by deactivating the camera
when its task is done.

The Micropython code for this block is:

m5camera.deinit()

But to reinitialise the camera, you will need to
use:

m5camera.init(0, 0, 320, 240,
pixformat=m5camera.RGB565,
framesize=m5camera.FRAME_QVGA,
fb_count=2,
fb_location=m5camera.IN_PSRAM)

In a custom code block for example:

Get camera JPG bytes and
BMP Bytes

These two value blocks are used to return the
number of bytes that an image is taking up in
memory. Currently these blocks are not of use

in UIFLow2 Alpha as the corresponding
blocks for saving images and jpg’s or bmp’s
do not exist even though the api’s are in the
firmware.

The Micropython code for using these
functions is:

label0.setText(str((m5camera.captu
re_to_bmp())))

Or

label0.setText(str((m5camera.captu
re_to_jpg())))

Set Camera Contrast

The set camera contrast block is used to
control the camera’s contrast. The range is
from -2 to +2.

Contrast Set to -2.

Contrast set to 0.

Page 33

Contrast set to +2.

The Micropython code for the set camera
contrast block is:

m5camera.contrast(0)

By changing the value in the “Set Contrast”
block in the following example to can test
contrast settings.

And the Micropython code for the example
above is:

import os, sys, io
import M5
from M5 import *
import m5camera

def setup():

 M5.begin()
 Widgets.fillScreen(0x222222)
 m5camera.init(0, 0, 320, 240,
pixformat=m5camera.RGB565,
framesize=m5camera.FRAME_QVGA,

fb_count=2,
fb_location=m5camera.IN_PSRAM)

def loop():
 M5.update()
 m5camera.disp_to_screen()
 m5camera.contrast(-2)

if __name__ == '__main__':
 try:
 setup()
 while True:
 loop()
 except (Exception,
KeyboardInterrupt) as e:
 try:
 from utility import
print_error_msg
 print_error_msg(e)
 except ImportError:
 print("please update to
latest firmware")

Page 34

Software and Hardware Modules

Just like UIFlow 1.X, the software and hardware modules depend on what hardware controller is
connected to UIFLow at the time of programming and the available functions can change.

Unlike UIFlow1.XX, UIFlow2 moved the software and hardware specific modules to a selector
under the GUI along with the Units.

While I’m using a CoreS3 here for the examples, I will be listing all available modules and
functions available in UIFlow2.x.Software Modules

Page 35

Time

The Time functions found in the section are
used to control most time related actions from
setting the Real Time clock to setting Sleep
delays and measuring time periods that a
function runs for.

Get Time Zone.

The Get Time Zone block returns the current
timezone reading. If no time zone is set using
one of the Set TimeZone blocks then Get
Timezone will return “None”.

The Micropyhton API for this block is:

(time.timezone())

Set Time Zone

The two Set TimeZone Blocks perform the
same function but In two different ways.

The first block is used to set the timezone
using a dropdown box:

Where as the second is used to just type in a
text string for the timezone.

The Micropyhton API for these two blocks is
exactly the same:

time.timezone(‘GMT0')

It is worth noting that the Micropython API
looks exactly the same as the Get Timezone
function.

In the following example I set the Timezone
using the dropdown box block and then use
the Get timezone block to show the timezone I
set.

Page 36

The Micropython code for this example is as
follows:

import os, sys, io
import M5
from M5 import *
import time

label0 = None
label1 = None

def setup():
 global label0, label1

 M5.begin()
 Widgets.fillScreen(0x222222)
 label0 = Widgets.Label("Text", 25,
46, 1.0, 0xffffff, 0x222222,
Widgets.FONTS.DejaVu18)
 label1 = Widgets.Label("Text", 24,
80, 1.0, 0xffffff, 0x222222,
Widgets.FONTS.DejaVu18)

def loop():
 global label0, label1
 M5.update()
 time.timezone('GMT0')

label0.setText(str((time.timezone())))

if __name__ == '__main__':
 try:
 setup()
 while True:
 loop()
 except (Exception,
KeyboardInterrupt) as e:
 try:
 from utility import
print_error_msg
 print_error_msg(e)
 except ImportError:
 print("please update to latest
firmware")

Sleep

The following blocks called Sleep serve the
same purpose to delay a function being
triggered after a previous function has been
run. These blocks are also know as Wait or
Delay blocks. It is worth noting that they are
not Deep Sleep control functions.

The function has been separated into three
different blocks in order to save the need for
working out the difference is seconds,
milliseconds and microseconds.

The Micropython api code for the sleep blocks
is as follows:

time.sleep(1)
time.sleep_ms(1)
time.sleep_us(1)

us (lowercase) is used instead of µs for
microseconds as the µ symbol is not
universally available or not known how to find.

Get UTC Time

The Get UTC Time block returns the current
date as a string of number in the following
order:

• Year,

• Month,

• Day,

• Hour,

• Minute,

• Seconds

Page 37

• Weekday

• Yearday.

Weekday is supposed to be 0 to 6
representing Monday to Sunday but it my
tests it was working Sunday to Saturday.

The Micropython code for this block is:

time.gmtime()

As a value block it must be used with other
blocks for example, in the following example I
use it with a Label block to display a simple
clock.

The Micropython code for this example is:

import os, sys, io
import M5
from M5 import *
import time

label0 = None

def setup():
 global label0

 M5.begin()
 Widgets.fillScreen(0x222222)
 label0 = Widgets.Label("Text",
8, 15, 1.0, 0xffffff, 0x222222,
Widgets.FONTS.DejaVu18)

def loop():
 global label0
 M5.update()

label0.setText(str((time.gmtime())
))

if __name__ == '__main__':
 try:

 setup()
 while True:
 loop()
 except (Exception,
KeyboardInterrupt) as e:
 try:
 from utility import
print_error_msg
 print_error_msg(e)
 except ImportError:
 print("please update to
latest firmware")

Get Local Timestamp Since
January 1 1970

The Get Local Time Stamp Since Jan 1 1970
is a value function that returns the amount of
milliseconds that have elapsed between 1 Jan
1970 and the current time and date the
function was called. This function can not be
used on its one and must be used with
another block (like a Label block) in order to
work.

The Micropython api for this block is:

(time.mktime(time.localtime()))

In the following example I just use a label
block to display the millisecond requested by
the block.

The Micropython code for this example is as
follows:

import os, sys, io
import M5
from M5 import *
import time

label0 = None

Page 38

def setup():
 global label0

 M5.begin()
 Widgets.fillScreen(0x222222)
 label0 = Widgets.Label("Text",
53, 66, 1.0, 0xffffff, 0x222222,
Widgets.FONTS.DejaVu18)

def loop():
 global label0
 M5.update()

label0.setText(str(time.mktime(tim
e.localtime())))

if __name__ == '__main__':
 try:
 setup()
 while True:
 loop()
 except (Exception,
KeyboardInterrupt) as e:
 try:
 from utility import
print_error_msg
 print_error_msg(e)
 except ImportError:
 print("please update to
latest firmware")

Get Local Time

The Get Local Time function is used to
retrieve the local time from a web server that
the device is located in. This is not always
perfect and can sometimes return the local
time for a different timezone.

The Get Local Time block returns the current
date as a string of number in the following
order:

• Year,

• Month,

• Day,

• Hour,

• Minute,

• Seconds

• Weekday

• Yearday.

Weekday is supposed to be 0 to 6
representing Monday to Sunday but it my
tests it was working Sunday to Saturday.

As of the time of writing, it is UK summer time
and so the following code example when run,
show the time one hour fast:

In order to correct for this error a Set
Timezone function is needed in the code to
adjust the time zone.

The Micropython code for this example is as
follows:

import os, sys, io
import M5
from M5 import *
import time

label0 = None

def setup():
 global label0

 time.timezone('GMT-1')
 M5.begin()

Page 39

 Widgets.fillScreen(0x222222)
 label0 = Widgets.Label("Text",
6, 68, 1.0, 0xffffff, 0x222222,
Widgets.FONTS.DejaVu18)

def loop():
 global label0
 M5.update()

label0.setText(str(time.localtime(
)))

if __name__ == '__main__':
 try:
 setup()
 while True:
 loop()
 except (Exception,
KeyboardInterrupt) as e:
 try:
 from utility import
print_error_msg
 print_error_msg(e)
 except ImportError:
 print("please update to
latest firmware")

Get Time Stamp Since

The Get Time Stamp Since block allows users
to specify a custom time and date to count
the milliseconds from instead of the default
date of the 1 Jan 1970.

The Micropython api for this function is:

(time.mktime((2000, 1, 1, 0, 0, 0,
0, 1)))

 Counters and ticks
The next few blocks and functions are used
for measuring time periods from one event to
another. Ticks is an arbitrary value used for
measuring time and can be set to a known
time base like milliseconds, microseconds
and/or CPU clock cycles. Ticks can also
“Wrap Around” which means that when they
reach a certain value, they can reset to 0 and
start increasing again. Because of this, direct
calculations can not be performed on tics
values directly.

Get Ticks in Milliseconds

Returns ticks measured in milliseconds.

The Micropython api for this function is:

(time.ticks_ms())

Get Ticks in MicroSeconds

Returns ticks measured in microseconds.

The Micropython api for this function is:

time.ticks_us())

Get CPU Ticks Count

Returns the tics measured in CPU cycles.

The Micropython api for this function is:

(time.ticks_cpu())

Page 40

Ticks Add delta

The Tics Add Delta block allows the ticks
value to be modified by delta which can be
the resultant number from a calculation.

The Micropython api for this function is:

(time.ticks_add(1, 1))

Ticks Difference

Returns the value of ticks between the two
specified ticks values.

The Micropython api for this function is:

(time.ticks_diff(1, 1))

Get System Uptime.

Returns the internal value on how long a
device has been powered on for.

The Micropython api for this function is:

(time.time())

MQTT

The MQTT functions in UIFlow 2.X allow for
devices to use MQTT to communicate and
transfer small amounts of data over a network.

MQTT stands for Message Queue Telemetry
Transport and is a Publish/Subscribe system
where sending devices publish to a topic
hosted on an MQTT server and receiving
devices subscribe and retrieve data from the
topic hosted on an MQTT server.

In Order to test and build an MQTT system for
my home, I based my MQTT server on an
M5Stack CM4 running a raspberry Pi CM4
with Raspbian using Mosquitto as the MQTT
server https://mosquitto.org/ . 

Page 41

https://mosquitto.org/

The hardware modules available to the CoreS3 are as follows: 

Page 42

Common Functions.
In this section I will list the common functions available in UIFlow2.x for all UIFlow2.x compatible
controllers.

Variable.
In UIFlow, a variable is a symbolic name that
represents a value stored in the memory of an
M5Stack microcontroller. Variables in UIFlow,
like in regular Micropython devices, are used
to store data, and they can hold various types
of values such as numbers, strings, lists,
dictionaries, and more. Unlike some other
programming languages, MicroPython is
dynamically typed, meaning you don't need to
declare the type of a variable explicitly; the
type is determined based on the value it
holds.

Here's an example of how you can define and
use variables in MicroPython:

The Micropython code for this example is as
follows:

Age = None
Name = None
Temperature = None
Fruit = None

def loop():
 global i2c0, env3_0, Age, Name,
Temperature, Fruit
 M5.update()
 Age = 21
 Name = 'John Doe'

 Temperature =
env3_0.read_temperature()
 Fruit = ['Apple', 'Orange',
'Banana']

In UIFlow, we first create the variables with the
value of “None” and then we populate the
variable with initial values.

In the example above I have shown four
different types of variable. The “Age” variable
has an integer value, the “Name” has a string
value, Temperature is a floating point number
retrieved from a sensor (in this case the
ENVIII) and the “Fruit” contains a list of
strings.

To create a variable you click on the “Create
Variable” button

And then in the popup window:

Type in a name for the variable. Once you
click OK you will be returned to the main
screen and three new variable blocks will
appear:

Set Variable to

The Set Variable To block is used to set the
initial value of the variable. In the above
example you can see that I used to block to
set the four different example types of initial
value for the variable.

Page 43

When the block is added to a program, three
lines of Micropython code are created.

The first Micropython line as mentioned
previous creates the variable with the initial
value of none:

Age = None

And then in the main loop, the variable is
defined as a global variable:

global Age,

And then the variable is assigned its initial
value:

Age = 21

Change Variable.

The Change Variable By block is used to
change the value of the variable. By default
UIFlow assumes the variable you created with
be a floating point value block assigns it a
mathematical value of 1.

The Resulting Micropython API will look like
this:

Fruit = (Fruit if
isinstance(Fruit, (int, float))
else 0) + 1

When using the change variable block for text,
you must use a convert to str block as shown
below:

Which results in the Micropython API for this
function looking like this:

Fruit = (Fruit if
isinstance(Fruit, (int, float))
else 0) + (str('Banana'))

But if used just for integer numbers, then the
Micropython API will look like this:

Age = 21

The Last block is the Variable value
placeholder block:

Variable Value

The variable Value place holder block is used
with code as a pointer allowing the code to
request the current data stored in the variable.

Clicking on the down arrow next to the
Variable name allows you to chose from a list
of already defined variable, rename a variable
(all instances of the renamed variable will also
change) or delete a variable.

Page 44

JSON
JSON (JavaScript Object Notation) in
MicroPython refers to the implementation of
JSON data serialisation and parsing within the
MicroPython programming language. JSON is
a lightweight data interchange format that is
easy for humans to read and write and easy
for machines to parse and generate. It is
widely used for transmitting data between a
server and a web application, as well as for
configuration files and data storage.

In UIFlow There are two functions available for
working with JSON. The first function we have
is:

Dumps To JSON

The Dumps to JSON function is used to
encrypt a data collection into a JSON
formatted string.

The Micropython API for the Dumps to JSON
block in UIFlow is:

 json.dumps(_)

Data that needs to be converted into a JSON
string can be formatted into two different data
types using the Create MAP functions or the
Create List Functions.

To two create a JSON MMAP string you use:

Or with the Create List you would use:

To load and convert the JSON string back into
a list we use the Load JSON function.

Load JSON

The Micropython API for the Loads Json
function is as follows:

json.loads(_)

Page 45

Mathematic Functions

 Numbers

Used to hold an user defined integer or
floating point number.

Common Equation,

Forms an equation of values places in the two
positions in the block. These values can be
constants or values returned from sensors.

Clicking on the down arrow next to the “+”
symbol reveals a drop down box where the
following actions can be chosen.

Available options are:

• Addition,

• Subtraction,

• Multiplication,

• Devision,

• Power,

• Percentage.

Formula calculation

The Formula function is used to add a sting of
nested calculations together in a single line.
Clicking on the down arrow next to the “+”
symbol reveals a drop down box where the
following actions can be chosen.

By Clicking on the “+” or the “-“ symbols,
more sections can be added to the formula for
example:

Which if place in a label block and run would
should a result of 4.5 on the CoreS3’s screen.

Page 46

Mathematical Constants

Allows calculations to use special values.

By clicking on the dropdown box next to the
symbol reveals the following special symbols:

• Pi (3.14),

• Eulars Number (2.718),

• Golden Ration (1.618),

• Square root 2 (1.414)

• Square Root 1/2 (0.707),

• infinity.

 Remainder of

Returns the remainder of one value divided by
another value.

 Value is even

Used to decide when a value is Even, Odd, a
Prime, a whole, a positive, a negative or

divisible by dependent on what is set in the
block.

By clicking the down arrow next to “even” you
get a drop down list of options.

Values are

• Even,

• Odd,

• Prime,

• Whole,

• Positive,

• Negative,

• Divisible by

  

Page 47

Sum of list

Returns the function from a list of values
stored in a list block attached to it..

This block has several functions hidden under
it which are revealed by clicking the down
arrow on the right.

To add a list, you would use the List function
as shown below. 
 

For more information on List functions, please
visit the list section.

• Sum - The sum total of values stored in the
list.

• Min - The lowest value in the list.

• Max - The highest value in the list.

• Average - An average value of all items in

the list.

• Median - The middle value from a list.

• Mode - The most common value in a list.

• Standard Deviation - The amount of
variance in the values in the list.

• Random item - A random item from the list.

 Random Fraction

,

Returns a random fraction between 0 and 1.

 Random Integer,

Returns a random integer from a range of user
defined values or values from variables and
sensors..

 Round

Rounds the number or value that follows it up
or down.

 Square Root

Returns the square root value, absolute value,
the negation of a value, the natural logarithm
of a number, a base10 logarithm of a number,
e to the power of a number, or 10 to the
power of a number or value connected to it.

 Trigonometric functions

Returns the Sine, Cosine, Tangent, Arcsine,
Arccosine, or Arctangent of a number.

Page 48

 Convert to int

Converts a value to an integer.

 Convert to Float,

Converts a value to a footing point number.

 Reserve Decimal Fraction

Reserves the user defined number as a
decimal fraction. 

Page 49

 S3 Schematics.

Full schematics for the Core S3 Develpopment Kit can be found in the document produced by M5
Stack found here: https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/docs/datasheet/core/
K128 CoreS3/Sch_M5_CoreS3_v1.0.pdf

Page 50

CoreS3/UIFlow Update Log

UIFlow Firmware
Alpha-21 2023-07-20

Feature: Unit GPS support.

Feature: update UI Image+.

Feature: micropython upgraded to 1.20.0.

Feature: Optimize core2 memory.

Alpha-20 2023-07-13

Feature: Core2 support.

Feature: Tough support.

Feature: UI Image+ support.

Feature: BLEUART supports setting name.

Alpha-19 2023-07-06

Feature: Software FileIO support.

Feature: Software WLAN STA support.

Feature: Software WLAN AP support.

Feature: Hardware SDCard support.

Feature: Hardware IR support.

Feature: Unit 8ENCODER support.

Feature: Unit LoRaWAN470 support.

Feature: Unit LoRaWAN868 support.

Feature: Unit LoRaWAN915 support.

Fixed: fix I2C bug.

Fixed: fix timezone bug, and auto save
timezone to nvs.

Alpha-18 2023-06-29

Feature: Hardware WDT support.

Feature: Hardware RTC support.

Feature: Hardware I2S support.

Feature: Hardware SPI support.

Fixed: fix weekday error.

Alpha-17 2023-06-15

Feature: Hardware ALS(Ambient Light Sensor)
support (CoreS3).

Feature: BtnPWR support.

Feature: Time add timezone support.

Feature: change epoch time from 2000-01-01
to 1970-01-01.

Feature: add APP.LIST.

Alpha-16 2023-06-09

Feature: UI Camera Image support.

Feature: support delete files remotely.

Alpha-15 2023-06-02

Feature: AtomS3U support.

Feature: Unit CardKB v1.1 support.

Fixed: fix widgets background colour bug.

Alpha-14 2023-05-26

Feature: Unit DLIGHT support.

Fixed: optimise the input effect of CardKB.

Fixed: fix CoreS3 touch lag.

Alpha-13 2023-05-19

Feature: CoreS3 support.

Feature: Hardware Touch support.

Alpha-12 2023-05-12

Feature: UI Label+ support.

Feature: Unit NCIR support.

Feature: Unit RELAY support.

Feature: Unit LIGHT support.

Alpha-11 2023-04-21

Feature: Software MQTT support.

Feature: Software HTTP support.

Feature: Software TCP support.

Feature: Software UDP support.

Feature: Unit Dual-BUTTON support.

Alpha-10 2023-04-14

Feature: Software BLE UART support.

Feature: Hardware custom Button support.

Alpha-9 2023-04-07

Feature: Unit EARTH support.

Feature: Unit ANGLE support.

Feature: Unit RGB support.

Feature: Unit FINGER support.

Feature: Unit PIR support.

Feature: Unit IR support.

Alpha-8 2023-03-31

Feature: Unit EXT.IO support.

Feature: Unit EXT.IO2 support.

Alpha-7 2023-03-24

Feature: Unit ADC support.

Feature: Unit DAC support.

Feature: Unit Color add method to get HSV
colour space.

Page 51

Fixed: setRotation bug fix.

Fixed: SK6812 colour order fix.

Alpha-6 2023-03-17

Feature: Unit ToF support.

Feature: Unit Color support.

Feature: Button callback function support.

Fixed: some bugs fix.

Alpha-5 2023-03-03

Feature: Unit PaHUB support.

Feature: Hardware Speaker support.

Feature: UserDisplay support.

Fixed: some bugs fix.

Alpha-4 2023-02-17

Feature: StampS3 support.

Feature: Unit ENV I/II/III support.

Fixed: some bugs fix.

Alpha-3 2023-02-10

Feature: download workspace code to device
support.

Fixed: some bugs fix.

Alpha-2 2023-02-03

Feature: add AtomS3-Lite support.

Feature: Hardware IMU support.

Feature: Hardware RGB support.

Fixed: some bugs fix.

Alpha-1 2023-01-13

Feature: add startup UI support.

Feature: add new LCD API support.

Fixed: PNG bug fix.

Fixed: others bugs fix.

UIFlow WEB IDE
Alpha-21 2023-07-20

Feature: Unit GPS support.

Feature: update UI Image+.

Fixed: some bugs fix.

Alpha-20 2023-07-13

Feature: Core2 support.

Feature: Tough support.

Feature: UI Image+ support.

Feature: BLEUART supports setting name.

Fixed: some bugs fix.

Alpha-19 2023-07-06

Feature: Software FileIO support.

Feature: Software WLAN STA support.

Feature: Software WLAN AP support.

Feature: Hardware SDCard support.

Feature: Hardware IR support.

Feature: Unit 8ENCODER support.

Feature: Unit LoRaWAN470 support.

Feature: Unit LoRaWAN868 support.

Feature: Unit LoRaWAN915 support.

Fixed: some bugs fix.

Alpha-18 2023-06-29

Feature: Hardware WDT support.

Feature: Hardware RTC support.

Feature: Hardware I2S support.

Feature: Hardware SPI support.

Fixed: some bugs fix.

Alpha-17 2023-06-15

Feature: Hardware ALS(Ambient Light Sensor)
support (CoreS3).

Feature: BtnPWR support.

Feature: Time add timezone support.

Fixed: some bugs fix.

Alpha-16 2023-06-09

Feature: UI Camera Image support.

Fixed: some bugs fix.Alpha-152023-06-02

Feature: AtomS3U support.

Feature: Unit CardKB v1.1 support.

Fixed: some bugs fix.

Alpha-14 2023-05-26

Feature: Unit DLIGHT support.

Fixed: some bugs fix.

Page 52

Alpha-13 2023-05-19

Feature: CoreS3 support.

Feature: Hardware Touch support.

Fixed: some bugs fix.

Alpha-12 2023-05-12

Feature: UI Label+ support.

Feature: Unit NCIR support.

Feature: Unit RELAY support.

Feature: Unit LIGHT support.

Fixed: some bugs fix.

Alpha-11 2023-04-21

Feature: Software MQTT support.

Feature: Software HTTP support.

Feature: Software TCP support.

Feature: Software UDP support.

Feature: Unit Dual-BUTTON support.

Feature: Hardware Display support.

Fixed: some bugs fix.

Alpha-10 2023-04-14

Feature: Software BLE UART support.

Feature: Hardware custom Button support.

Fixed: some bugs fix.

Alpha-9 2023-04-07

Feature: Unit EARTH support.

Feature: Unit ANGLE support.

Feature: Unit RGB support.

Feature: Unit FINGER support.

Feature: Unit PIR support.

Feature: Unit IR support.

Fixed: some bugs fix.

Alpha-8 2023-03-31

Feature: Unit EXT.IO support.

Feature: Unit EXT.IO2 support.

Fixed: some bugs fix.

Alpha-7 2023-03-24

Feature: Unit ADC support.

Feature: Unit DAC support.

Feature: Button callback function support.

Fixed: some bugs fix.

Alpha-6 2023-03-17

Feature: Unit ToF support.

Feature: Unit Color support.

Fixed: some bugs fix.

Alpha-5 2023-03-03

Feature: Unit PaHUB support.

Feature: Hardware Speaker support.

Fixed: some bugs fix.

Alpha-4 2023-02-17

Feature: StampS3 support.

Feature: Unit ENV I/II/III support.

Feature: Hardware I2C support.

Fixed: some bugs fix.

Alpha-3 2023-02-10

Feature: download workspace code to device
support.

Fixed: some bugs fix.

Alpha-2 2023-02-03

Feature: add AtomS3-Lite support.

Feature: Hardware IMU support.

Feature: Hardware RGB support.

Fixed: some bugs fix.

Alpha-1 2023-01-13

Feature: Hardware Button support.

Feature: Hardware UART support.

Feature: Software Time support.

Fixed: some bugs fix.

Page 53

Page 54

Exploring the Micropython Modules
Functions in Micropython are collected into classes which are then grouped into modules or
libraries. In order to use functions you first have to import the module containing the class or
directly import only the needed class from the container module.

Finding the internal modules requires issuing command into the REPL (Read, Evaluate, Print and
Loop). Looking at the bottom of Thonny at the moment the shell only has the following text:

MicroPython v1.19.1 on 2022-06-18; ESP32C3 module with ESP32C3
Type "help()" for more information.
>>>

After the 3 arrows (>>>) type in help() and hit return.

MicroPython v1.19.1 on 2022-06-18; ESP32C3 module with ESP32C3
Type "help()" for more information.
>>> help()
Welcome to MicroPython on the ESP32!

For generic online docs please visit http://docs.micropython.org/

For access to the hardware use the 'machine' module:

import machine
pin12 = machine.Pin(12, machine.Pin.OUT)
pin12.value(1)
pin13 = machine.Pin(13, machine.Pin.IN, machine.Pin.PULL_UP)
print(pin13.value())
i2c = machine.I2C(scl=machine.Pin(21), sda=machine.Pin(22))
i2c.scan()
i2c.writeto(addr, b'1234')
i2c.readfrom(addr, 4)

Basic WiFi configuration:

import network
sta_if = network.WLAN(network.STA_IF); sta_if.active(True)
sta_if.scan() # Scan for available access points
sta_if.connect("<AP_name>", "<password>") # Connect to an AP
sta_if.isconnected() # Check for successful connection

Control commands:
 CTRL-A -- on a blank line, enter raw REPL mode
 CTRL-B -- on a blank line, enter normal REPL mode
 CTRL-C -- interrupt a running program
 CTRL-D -- on a blank line, do a soft reset of the board

Page 55

 CTRL-E -- on a blank line, enter paste mode

For further help on a specific object, type help(obj)
For a list of available modules, type help('modules')
>>>

This give us a little bit of details to understand how the REPL/Shell works. The REPL/Shell is
actually connected to the M5Stamp and directly running code on the physical M5Stamp.

In order to view the modules pre-compiled into the firmware type:

help(‘modules’)

And hit return. Micropython is case sensitive so make sure the command is typed exactly as show.

>>> help('modules')
__main__ framebuf uasyncio/stream uplatform
_boot gc binascii urandom
_onewire inisetup ubluetooth ure
_thread math ucollections uselect
_uasyncio micropython ucryptolib usocket
_webrepl neopixel uctypes ussl
apa106 network uerrno ustruct
btree ntptime uhashlib usys
builtins onewire uheapq utime
cmath uarray uio utimeq
dht uasyncio/__init__ ujson uwebsocket
ds18x20 uasyncio/core umachine uzlib
esp uasyncio/event uos webrepl
esp32 uasyncio/funcs upip webrepl_setup
flashbdev uasyncio/lock upip_utarfile websocket_helper
Plus any modules on the filesystem
>>>

The list above shows us what modules are precompiled into the mainstream Micropython 1.19.1
firmware that I am using with the M5StampC3 and M5StampC3U. In order to view the functions in
a module, you first need to import the module with:

>>> import esp32

And then use the dir() command to view the functions.

>>> dir(esp32)
['__class__', '__name__', 'HEAP_DATA', 'HEAP_EXEC', 'NVS', 'Partition', 'RMT',
'WAKEUP_ALL_LOW', 'WAKEUP_ANY_HIGH', 'gpio_deep_sleep_hold', 'idf_heap_info',
'wake_on_ext0', 'wake_on_ext1', 'wake_on_touch']
>>>

Page 56

Most of that list is arguments which can be set in a function but more information on arguments will
be covered later.

From the M5 module we have the following GUI API’s:

Screen:

Widgets.setBrightness(0)
Widgets.fillScreen(0x6600cc)
Widgets.setRotation(0)

Title:

title0.setTextCursor(x=0)
title0.setColor(text_c=0x6600cc, bg_c=0x6600cc)
title0.setText('Title')
title0.setVisible(True)
title0.setVisible(False)

Label:

label0.setCursor(x=0, y=0)
label0.setColor(0x6600cc)
label0.setSize(1.5)
label0.setText(str('Hello World'))
label0.setFont(Widgets.FONTS.DejaVu9)
label0.setVisible(False)
label0.setVisible(True)

Label+

label_plus0.set_update_period(5000)
label_plus0.setCursor(x=0, y=0)
label_plus0.setColor(0x6600cc)
label_plus0.setSize(1.5)
label_plus0.setText(str('Label'))
label_plus0.setFont(Widgets.FONTS.DejaVu9)
label_plus0.setVisible(True)
label_plus0.setVisible(False)

 label_plus0.is_valid_data()

Rectangle

rect0.setCursor(x=0, y=0)
rect0.setColor(color=0x6600cc, fill_c=0x6600cc)

 rect0.setSize(w=0, h=0)
rect0.setVisible(True)
rect0.setVisible(False)

Circle

circle0.setCursor(x=0, y=0)
circle0.setColor(color=0x6600cc, fill_c=0x6600cc)

 circle0.setRadius(r=0)
circle0.setVisible(True)
circle0.setVisible(False)

Line

line0.setPoints(x0=0, y0=0, x1=0, y1=0)
line0.setColor(0x6600cc)
line0.setVisible(True)
line0.setVisible(False)

Page 57

Triangle

triangle0.setPoints(x0=0, y0=0, x1=0, y1=0, x2=0, y2=0)
triangle0.setColor(0x6600cc)
triangle0.setVisible(True)
triangle0.setVisible(False)

Image

 image0.setCursor(x=0, y=0)
 image0.setImage("res/img/default.png")
 image0.setVisible(True)

Image+

	 image_plus0.set_update_enable(False)
 image_plus0.set_update_period(5000)
 image_plus0.setCursor(x=0, y=0)
 image_plus0.setVisible(True)

Camera

m5camera.init(0, 0, 320, 240, pixformat=m5camera.RGB565,
framesize=m5camera.FRAME_QVGA, fb_count=2,
fb_location=m5camera.IN_PSRAM)
m5camera.setCursor(x=0, y=0, w=0, h=0)
m5camera.setVisible(True)
m5camera.setVisible(False)
m5camera.disp_to_screen()
m5camera.deinit()
m5camera.contrast(0)
m5camera.global_gain(0x12)
m5camera.hmirror(True)
m5camera.hmirror(False)
m5camera.vflip(True)
m5camera.vflip(False)
m5camera.colorbar(True)
m5camera.colorbar(False)

From the M5 module we have the following Software module API’s:

Time

 (time.timezone())
 time.timezone(‘GMT0’)
	 time.sleep(1)
 time.sleep_ms(1)
 time.sleep_us(1)
 time.gmtime()
 time.mktime(time.localtime()))
 (time.mktime((2000, 1, 1, 0, 0, 0, 0, 1)))
 (time.ticks_ms())
 (time.ticks_us())
 (time.ticks_cpu())
	 (time.ticks_add(1, 1))
 (time.ticks_diff(1, 1))
 (time.time())

BLE UART

MQTT

Page 58

	Introduction.
	CoreS3 Development Kit Features
	Powering the Core
	Exploring the Outside.
	Factory Demo
	Instilling the UIFlow 2.0 Firmware with M5Burner.
	Programming In UIFlow 2.0
	Software and Hardware Modules
	Common Functions.
	CoreS3/UIFlow Update Log
	Exploring the Micropython Modules

